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Abstract

Software defects are a curse, they are so difficult to find that most software

is declared finished, only later to have defects discovered. Ideally, software tools

would find most, or all of those defects for us. Bit-vector and array reasoning is

important to the software testing and verification tools which aim to find those

defects. The bulk of this dissertation investigates how to build a faster bit-vector

and array solver.

Theusefulness of a bit-vector and array solver dependschiefly on it being correct

and efficient. Ourwork is practical, mostlywe evaluate different simplifications that

make problems easier to solve. In particular, we perform a bit-vector simplification

phase that we call “theory-level bit-propagation” which propagates information

throughout the problem. We describe how we tested parts of this simplification to

show it is correct.

We compare three approaches to solving array problems. Surprisingly, on the

problems we chose, we show that the simplest approach, a reduction from arrays

and bit-vectors to arrays, has the best performance.

In the second part of this dissertation we study the symbolic execution of com-

piled software (binaries). We use the solver that we have built to perform symbolic

execution of binaries. Symbolic execution is a program analysis technique that

builds up expressions that describe all the possible states of a program in terms

of its inputs. Symbolic execution suffers from the “path explosion”, where the

number of paths through a program grows tremendously large, making analysis

impractical. We show an effective approach for addressing this problem.
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1
Introduction

M
ILLIONS of computer programmers spend a substantial part of their

days finding and fixing defects in their programs. Tools that make

it easier to find defects in software are of enormous practical signif-

icance. This thesis contributes components that improve some of those defect-

finding tools.

The bulk of the dissertation investigates approaches to efficiently solving bit-

vector and array problems. The bit-vector theory introduces low-level operations

such as multiplication and addition, which model the basic operations provided by

a computer. Thesebasic operationsmake it easy for software verification and testing

tools to pose questions to such solvers about the effect of sequences of instructions.

The improvements to bit-vector and array solvers have made possible many

tools. Amongst many uses, bit-vector and array solvers are used to automatically

generate exploits for vulnerable software [ACHB11], to implement string solvers

[GKA+11], to discharge theorems in theorem provers [BFSW11], and to check the

equivalence of software [Smi11].

As an instance of a problemposed to a bit-vector solver, consider askingwhether

there exists a 64-bit value that when multiplied by 4 equals 12, but which is not 3.

Because the arithmetic that computers perform can overflow, such a value exists.

The problem may be expressed in the SMT-LIB2 format as:

1



CHAPTER 1. INTRODUCTION

; This is a comment

(set-logic QF_BV); This says it’s a bit-vector problem

(declare-fun x () (_ BitVec 64)); Makes a 64-bit variable

(assert (=

(_ bv12 64) ; The constant 12 (in 64 bits)

(bvmul (_ bv4 64) x ) ; 4*x

)

) ; 12 = 4*x (remember: not equivalent to 3 = x)

(check-sat)

; Prints x=3 (The first solution it happened to find)

(assert (not (= x (_ bv3 64) ))) ; x != 3

(check-sat)

; Prints x= 0x4000000000000003

Commands to the bit-vector solver are given between brackets. Anything to the

right of a semi-colon is a comment. This creates a bit-vector x of 64 bits, then asserts

to the bit-vector solver that 12 = (4 × x). The (check-sat) command tells the bit-

vector solver to look for a satisfying assignment to the problem. When we run this

problem on our bit-vector solver, STP2, it reports that x=3 is such an assignment.

However, it could have reported any of the possible assignments. Next, we assert

to the bit-vector solver that (x , 3), and ask for another satisfying assignment. This

time it returns an assignment to x with the second-most significant bit set. This

value when multiplied by 4 produced 12 as the result.

Bit-vector and array solvers take problems, usually from a software verification

or testing tool, and decide whether satisfying assignments exist to those problems.

Our bit-vector solver STP2 is efficient; it won the QF BV division at the annual

SMT-COMP 2010. It placed second at the 2011 contest. STP2 and another of our

bit-vector solvers placed second and third at the 2012 contest. Since 2007, bit-vector

solvers have gone through a dramatic performance improvement. Comparing

winners on the SMT-COMP 2007 benchmark set, the 2007 winner Spear v1.9 takes

2



3260s, the 2008 winner Boolector takes 1029s, and the 2009 winner MathSAT 4.3

takes 355 seconds. Our solver, STP2 r1659, solves the problems in 210 seconds.

STP2 is based on STP, an open-source solver that was equal winner at the

2006 contest. Modern bit-vector solvers contain hundreds of simplification and

optimisation rules. We havemademore than a thousand, sometimes small, changes

to STP that cumulatively have the effect of making STP2 amongst the best available

solvers.

Towards the end of this dissertation,we investigate an application of STP2 to the

symbolic execution of machine code programs. Symbolic execution builds formulae

that describe the value of program variables as functions of the program’s inputs.

This thesismakes several significant contributions. In chapter 3,we identify sim-

plifications that when combined give a bit-vector solver that is extremely efficient.

In chapter 4, wedescribe aparticular simplificationwhichutilises bit-propagation to

speed up bit-vector solving significantly. In chapter 5, we describe a novel decision

procedure for solving problems in the combined theory of arrays and bit-vectors.

Finally, in chapter 6we describe an approach to improving test generation of binary

programs.
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2
Preliminaries

T
HIS chapter gives a quick review of the basic concepts that we rely on.

The material we present here is not detailed enough to learn the concepts.

Instead, this section is intended to refresh the reader’s knowledge of the

material and to fix the notation we use. In particular, we introduce the theories of

bit-vectors and arrays. The solver that we spend the majority of this dissertation

discussing solves satisfiability problems in these theories.

2.1 SAT Solving

A propositional formula is: true (1), false (0), a Boolean variable, the negation of

a propositional formula, or the conjunction of two propositional formulae. For

convenience, we add redundant propositional operations (Table 2.1). A classical

truth assignment µ is amapping from each of the Boolean variables in a propositional

formula to either 1 or 0. Here 0 denotes falsehood and 1 denotes truth. So we write

the fact that µmakes a Boolean variable b true by µ(b) = 1. The domain dom(µ) of µ

Logical Operation Description

¬p logical not (evaluates to 1 iff (p ⇐⇒ 0))
p0 ∧ p1 logical and (evaluates to 1 iff (p0 ⇐⇒ 1) and (p1 ⇐⇒ 1))
p0 ∨ p1 logical or ¬(¬p0 ∧ ¬p1)
p0 ⊕ p1 logical exclusive-or ((p0 ∧ ¬p1) ∨ (¬p0 ∧ p1))
p0 ⇐⇒ p1 logical if-and-only-if (p0 ⊕ ¬p1)
p0 =⇒ p1 logical implication (¬p0 ∨ p1)
ITE(p0, p1, p2) logical if-then-else (ITE) (p0 =⇒ p1) ∧ (¬p0 =⇒ p2)

Table 2.1: Logical operations of QF BV & QF ABV

5
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is the set of variables that are mapped, by µ, to 0 or 1. We denote the set of variables

in a propositional formula p by vars(p).

When a propositional formula p is evaluated subject to an assignment µ, it

evaluates to either 1 or 0, provided vars(p) ⊆ dom(µ). We sometimes apply a

truth assignment µ to a whole formula p, writing µ(p), µ being defined by natural

extension. A satisfying assignment to a propositional formula is one for which the

formula evaluates to 1.

The propositional satisfiability problem (SAT) is to decide if there exists a satis-

fying assignment to a propositional formula. A SAT solver is a decision procedure

for the SAT problem. Currently, most SAT solvers accept conjunctive normal form

(CNF) as input. The basic building blocks of CNF are literals, a literal being either a

Boolean variable, or the negation of a variable. (We sometimes talk of literals being

assigned a value, meaning the underlying variable is assigned a value that causes

that particular literal to be either 0 or 1.) A clause is a disjunction of literals. A

formula is in CNF if it is a conjunction of clauses. The Cook-Levin theorem [Coo71]

states that the SAT problem for CNF is NP-complete, so finding an answer is not

necessarily easy. Propositional formulae p and p′ are equisatisfiable if, loosely, p is

satisfiable iff p′ is satisfiable. In most contexts where p and p′ share variables, it

is understood that, for p and p′ to be considered equisatisfiable, satisfying truth

assignments for the two must agree on the shared variables. More precisely:

∀µ(µ(p) = 0) ⇐⇒ ∀µ(µ(p′) = 0) ∧

∀µ∃µ′(µ(p) = µ′(p′) ∧ (v ∈ vars(p) ∩ vars(p′) =⇒ µ(v) = µ′(v)))

The widely-used Tseitin transformation [Tse83] converts an arbitrary proposi-

tional formula into an equisatisfiable CNF formula in linear time by adding a linear

number of fresh variables. Note the encoding size is linear only as long as the logical

operations have a linear size encoding, as in our case. The Plaisted and Greenbaum

translation [PG86] often achieves a more compact CNF encoding.

Example 2.1

Consider the propositional formula: (b0 ∧ (b1 ⊕ b2)), where b0, b1 and b2 are propo-

sitional variables. A satisfying assignment is [b0 7→ 1, b1 7→ 0, b2 7→ 1]. The formula

can be converted into CNF via the Tseitin transformation with the aid of a fresh
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variable b3. As CNF it becomes: b0∧b3∧(¬b1∨b2∨b3)∧(b1∨¬b2∨b3)∧(b1∨b2∨¬b3)∧

(¬b1∨¬b2∨¬b3). Because the exclusive-or expression, in the context of the rest of the

formula, must be 1, an approach like Plaisted and Greenbaum’s omits some clauses

and still produces an equisatisfiable result: b0∧b3∧(b1∨b2∨¬b3)∧(¬b1∨¬b2∨¬b3). �

We introduce some SAT solving concepts because we apply an approach to

solving array problems (section 5.5) that is built into a SAT solver.

The SAT solvers we use are based on the DPLL algorithm [DLL62]. However,

modern SAT solvers have tremendously improved upon the DPLL algorithm. The

DPLL algorithm alternately propagates information, and performs search which

selects variable assignments heuristically. TheDPLL algorithm takesCNF format as

input. It lifts from Boolean logic to ternary logic where along with 1 and 0 variables

may be unassigned, meaning their value is unknown. Unit propagation assigns 1

to an unassigned literal in some clause if all the other literals in that clause have

been assigned 0. If all the literals in a clause are assigned 0, or if a clause is empty,

then a conflict has occurred because the assignment does not satisfy the formula.

Modern SAT solvers use the partial assignment to perform “conflict driven clause

learning”. When a conflict occurs, they generate a conflict clause that summarises

which assignments cannot occur together. The conflict clause is conjoined with the

other clauses to prevent that combination of assignments from occurring again.

A simple SAT solving algorithm is given in Algorithm 2.1.

When unit propagation has stabilised, search is performed. The decision level is

the number of variables assigned via search. A trail is a list of the variables that are

assigned, both by search and unit propagation, together with the decision levels

at which they were assigned. Using the trail, a cancel undoes the work performed

beyond a given decision level.

The two watched literals technique [MMZ+01] speeds up unit propagation. Two

literals in each clause are watched. When one of the twowatched literals is assigned

0, a new unassigned literal in the clause is searched for. If one does not exist and

the clause does not contain a 1, then the remaining literal must be 1. The technique

is particularly useful because it is independent of backtracking: it does not break

sophisticated backtracking techniques.
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Algorithm 2.1 A simple SAT solving algorithm

Require: p, a propositional formula in CNF
1: Create dl← 0, the decision level
2: Create µ: assignments from variables to: {0, 1}
3: while true do
4: Perform unit propagation
5: if a conflict occurred during unit propagation then

6: if dl = 0 then

7: return unsatisfiable
8: end if

9: Create a conflict clause c
10: p← c ∧ p
11: Cancel assignments until c is not in conflict
12: Update dl
13: else

14: if some variable is not in µ then
15: Set a variable not in µ to either 1 or 0
16: Increment dl
17: else

18: return satisfiable
19: end if

20: end if

21: end while
22: return satisfiable

The SAT solvers we use are incremental. This means that after solving someCNF

formula p0, the work performed speeds up solving p0∧p1, where p1 is another CNF

formula.

For a thorough treatment of SAT solving history, design, and practice, see Biere

et al. [BHvMW09].

2.2 SMT

The satisfiability modulo theories (SMT) problem is to find a satisfying assignment

to a first-order logic formula where some functions are interpreted in one or more

theories. The bit-vector and array theories we consider are decidable. We do

not allow quantifiers, so solve for a propositional combination of functions. SMT

solvers combine the efficiency of propositional satisfiability solvers (SAT), with the

ability to reason at a higher theory-level.

The bit-vector and array theories that we consider in this dissertation, are just

two of the theories defined as part of the SMT-LIB [BST10] initiative.
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t[n] ::= | t[n] ◦t t
[n]

| −t[n] | (bvnot t[n]) | ite(p, t[n], t[n]) (term if-then-else)

| (t[m] :: t[n−m]) (concatenation)

| t[m][i, j], where: j ≥ 0, i < m, i − j + 1 = n (extraction)

| ([0|1]n)2 | v | sext
[n](t[m]),m < n (sign extend)

◦t ::= ( bvxor ) | ( bvand ) | ( bvor ) | (+) | (%u) (unsigned remainder)

| (%s) (signed remainder) | ( mods ) (signed modulus)

| (×) (multiplication) | (≪) (left shift) | (≫l) (right shift)

| (≫a) (arithmetic shift) | (÷u) (unsigned division) | (÷s) (signed division)

p ::= | t[n] ◦p t
[n]

| p ⊕ p | p ∨ p | p ∧ p | p ⇐⇒ p | ¬p | ite(p, p, p) | 0 | 1 | b

◦p ::= (<u) | (<s) | (≤s) | (≤u) | =

Figure 2.1: A grammar for QF BV. b ranges over a countably infinite set of propo-
sitional variables, and v ranges over a countably infinite set of (fixed bit-width)
bit-vector variables. An ‘s’ subscript means the operation interprets bit-vectors
as signed integers, a ‘u’ subscript means bit-vectors are interpreted as unsigned
integers.

2.3 Bit-Vectors

The QF BV language is the first-order quantifier-free theory of fixed-width bit-

vectors. A fixed-width bit-vector (t[n]) is a vector of n bits. The bits of a bit-vector

are indexed from 0 to n − 1, and are written with the zeroeth bit on the right. We

indicate extraction of a single bit from a bit-vector as t[n][i], where i is a natural

number between 0 and n − 1 inclusive. Figure 2.1 gives a grammar for the QF BV

language; the names corresponding to the symbols are given in Table 2.2. Bit-vector

terms are signedness agnostic, that is, neither signed nor unsigned. The seman-

tics of some operations treats terms as being signed integers, others treat them as

unsigned. Unsigned operations interpret the bit-vector t[n] as the natural number
∑n−1

i=0 (2
i×t[n][i]), where t[n][i] yields the integer value 0 if t[n]’s ith bit is zero, otherwise

it yields 1. Signed operations use two’s-complement to interpret bit-vectors as the

integer (−2n−1 × t[n − 1]) +
∑n−2

i=0 (2
i × t[i]).

We indicate binary literals in brackets with a subscript of 2. For example, (10)2

corresponds to a 2-bit bit-vector that denotes the decimal constant 2.
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Because the bit-vector operations can overflow, some bit-vector arithmetic op-

erations return different results to their integer counterparts. For instance, both

multiplication and addition are performed modulo 2n, where n is the bit-width.

Because the bit-width of the result is the same as the bit-width of the operands,

bits in the result at position n or above are discarded. If the bit-width of the result

of multiplication was twice the width of the operands, as in some formulations,

then there would be no overflow and the result would be the same as for integer

multiplication.

Example 2.2

Consider the multiplication (3[2] × 3[2]) = ((11)2 × (11)2) = (01)2 = 1[2]. There are two

bits in 1[2], the least significant is 1 (that is, 1[2][0] = 1), and the most significant is 0

(that is, 1[2][1] = 0). �

The semantics of bit-vectors is similar to that of integers, but differs in some

important cases.

Example 2.3

Some instances of the bit-vector arithmetic producing perhaps unexpected results

are:

• 3
3 = 1, 43 = 1, 53 = 1 (truncating division).

• 86[8] × 3[8] = 2[8] (overflow).

• ((011)2 >s (111)2) . ((011)2 + (001)2 >s (111)2 + (001)2) (overflow).

• (2x = 2y) . (x = y). The equivalence fails to hold because there is no unique

multiplicative inverse for an even number modulo 2n.

• (3x = 3y) ≡ (x = y). There is a unique multiplicative inverse for odd numbers.

�

Comprehensive descriptions of the QF BV and QF ABV languages are download-

able from the SMT-LIB website [BRST08]. As of 2011, the SMT-LIB2 format has
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Bit-vector Operation Description

(t[n] ≪ t[n]) Left shift
(t[n] ≫a t

[n]) Arithmetic right shift
(t[n] ≫l t

[n]) Logical right shift
(t[n] :: t[m]) Concatenation
t[n][i, j] Extract
(bvnot t[n]) Bitwise negation
−t[n] Unary minus
(t[n] bvand t[n]) Bitwise and
(t[n] bvxor t[n]) Bitwise exclusive-or
(t[n] bvor t[n]) Bitwise or
(t[n] + t[n]) Modulo addition
(t[n] × t[n]) Modulo multiplication
(t[n] − t[n]) Modulo subtraction
(t[n] ÷u t

[n]) Unsigned division
(t[n] ÷s t

[n]) Signed division
(t[n] %u t

[n]) Unsigned remainder
(t[n] %s t

[n]) Signed remainder
(t[n] mods t

[n]) Signed modulus
(t[n] <s t

[n]) Signed less than
(t[n] ≤s t

[n]) Signed less than equals
(t[n] >s t

[n]) Signed greater than
(t[n] ≥s t

[n]) Signed greater than equals
(t[n] <u t[n]) Unsigned less than
(t[n] ≤u t[n]) Unsigned less than equals
(t[n] >u t[n]) Unsigned greater than
(t[n] ≥u t[n]) Unsigned greater than equals
ite(p, t[n], t[n]) Term if-then-else

Table 2.2: The bit-vector operations of QF BV

replaced the older SMT-LIB format. In this thesis, we conform with SMT-LIB2

unless indicated.

Some notes about the symbols given in Table 2.2:

• The i and j used by the extract operation are natural numbers including zero.

In the fixed-width formulation of bit-vectors, which we use, it is not possible

to use arbitrary terms as i or j.

• The “arithmetic shift right” operation (≫a), copies the most significant bit

of the first operand as the value is right shifted. The logical shift operation

moves in zeroes to the left.
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• There is a single multiplication operation (×). When the bit-width of the

operands and results is the same, as in the QF BV formulation, signed and

unsigned multiplication are equivalent.

• Unsigned division (÷u) rounds towards zero. It never overflows, that is,

it returns the same result as integer division with rounding towards zero.

Signed division (÷s) also rounds towards zero, but it overflows when the

most negative value is divided by minus one.

• Unsigned remainder (%u) gives the remainder of division rounding towards

zero. Signed remainder (%s) gives the remainder of division with rounding

towards zero. The signed modulus (%s), which is rarely used, gives the

remainder for division rounding towards negative infinity.

• All of the bit-vector operations are total. So, division by zero is acceptable. For

convenience, we define: (t%s 0) = t, (t mods 0) = t, (t%u 0) = t, and (t÷u 0) = 1.

For (t <s 0) we define (t ÷s 0) = −1, and for (t ≥s 0), (t ÷s 0) = 1. This avoids

the more complicated SMT-LIB2 semantics for division by zero. Although

division by zero is defined, it is treated specially and is not introduced when

solving problems that do not already contain it. So, contradictions will not be

proved if division by zero is not initially present in the problem.

The complexity of the decision problem for QF BV was recently shown by

Kovásznai et al. [KFB12] to be non-deterministic exponential-time complete.

2.4 Arrays

Anarray is amap frombit-vectors ofwidthn to bit-vectors ofwidthn′. Alternatively

we can think of an array as a list of 2n values, indexed from 0 to 2n−1. We sometimes

annotate arrays with “type” information. For example, if a maps from bit-vectors

of bit-width 2, to bit-vectors of bit-width 3, we write it as a[2:3]. The select function

is used to return the contents of a particular location. The store function creates a

new array. The array operations are shown in Table 2.3.

The QF ABV language extends QF BV with single-dimensional arrays that are

manipulated using the select and store functions. QF ABV is the extensional theory

12
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Array Function Description

ite(p, a[n:m]
0
, a[n:m]

1
) array ITE

select(a[n:m]
0
, t[n]) array read

store(a[n:m]
0
, t[n]

0
, t[m]

1
) array write

Table 2.3: Array operations of QF ABV

of arrays, so allows equality between arrays. Our solver STP2 does not handle

extensionality, so it only solves for a fragment of QF ABV.

While arrays are single-dimensional, multi-dimensional arrays can be simulated

by concatenating multiple indices together.

store(a[n:m], t[n], t[m]) returns a new array the same as a[n:m], except that at index

t[n], the value is t[m]. Arrays only contain, and are indexed by, bit-vectors. So, the

number of values that an array contains will always be a power of two. Arrays are

total, so there are no out-of-bounds indices.

2.5 Term Rewriting

Term rewriting is widely used by bit-vector solvers to simplify expressions. Rewrite

rules can apply theorems that the SAT solver might struggle to determine. Babić

[Bab08] gives the example that the best SAT solvers cannot prove that (a[12] × b[12])

= (b[12] × a[12]) in reasonable time. For this reason, Babić ([Bab08] page 89) reports

that the Spear solver has approximately 160 rewrite rules. Franzén ([Fra10] page

42) reports that MathSAT contains close to 300 rewrite rules.

A rewrite rule contains term variables, which match arbitrary expressions. A

subterm of a term t is t itself or, if t is composite, a subterm of one of t’s children.

A rewrite rule transforms a term of some arbitrary type, to an equivalent (usually

simpler) term of the same type. An equality can be transformed into a rewrite rule

by treating its variables as term variables, and by orienting the equality somehow.

Given two terms t0 and t1, a rewrite rule t0 ⊲ t1 has the property that t0 and t1

are equal for any possible assignment, and t0 >r t1, where >r is some pre-specified

partial ordering on terms. Matching t0 to t1 is finding a substitution (σ) for the term

variables in t0 that make t0[σ] syntactically identical to t1.
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2.6 Structural Hashing

STP2, like most other solvers, avoids the creation of duplicate sub-expressions.

A single sub-expression is created in the case that two or more expressions refer

to the same sub-expression. Because an expression may have identical children,

for instance (x + x), structural hashing produces an acyclic directed multi-graph.

However, in our work the distinction between multi-graphs and graphs is largely

irrelevant. Instead, we consider an expression to be a directed acyclic graph (DAG)

with labels on edges ordering the sub-expressions. Our expression DAGs have a

single root expression,oriented so the leaves of theDAGare constants and variables.

Structural hashing goes by various names and is used in many contexts, including

as the hash-consing of Lisp.

Smith [Smi11] reports that a bit-vector and array theory representation of the

Blowfish cryptographic algorithm has 6.9 × 105186 nodes in the tree representation,

and 220, 639 in the DAG representation. Applying structural hashing to some

expressions is clearly essential.

2.7 Sharing-Aware Transformations

In a shared expression, that is, one that has been structurally hashed (section 2.6)

and where expressions are shared, changes which when viewed locally decrease

the global number of expressions, may, because of the sharing, actually increase the

total number of expressions. Transformations that take such sharing into account

are variously called DAG aware, graph aware, sharing aware, size preserving, or

size reducing. We call such transformations sharing aware. We call a transformation,

which may increase the total number of expressions, because it is ignorant of the

effect of its transformations on shared expressions, speculative.

Example 2.4

Consider replacing the expression −(v0 + v1) with (−v0 − v1), where v0 and v1 are

bit-vector variables. This pushes unaryminus through bit-vector addition. Initially,

there were four expressions: v0, v1, (v0 + v1), and −(v0 + v1). After the transforma-

tion, there are still four expressions: v0, −v0, v1, and (−v0 − v1). However, if the

term (v0 + v1) is shared, that is, it is the child of another term, and if (−v0 − v1) is

14



2.8. BIT-BLASTING

not shared, then the transformation removes a unary minus expression, but creates

a unary minus and a binary minus term. In that context the transformation has

caused a total increase of one binary minus. �

2.8 Bit-Blasting

Bit-blasting reduces a problem, expressed in some theory, to propositional logic. For

instance, in the QF BV theory a multiplication between two 64-bit terms is expressed

as one term. However, when it is bit-blasted to CNF, thousands of clauses are

produced that contain many fresh propositional variables.

Example 2.5

An algorithm to bit-blast an n-bit addition is shown below. The algorithm assumes

that the operands have already been converted to propositional formulae. It returns

a formula which faithfully mimics bit-vector addition. This translates a single bit-

vector term to propositional logic. The translation does not introduce any fresh

variables; however, fresh variables willmost likely be introducedduring conversion

to CNF.

Require: p[n]
0
, p[n]

1
: arrays of formulae to add

1: Create: r, an empty array of formulae

2: Create: carry, a variable of type formula

3: carry← 0

4: for i ∈ 0 . . . (n − 1) do

5: r[i]← p0[i] ⊕ p1[i] ⊕ carry

6: carry← (carry ∧ p0[i]) ∨ (carry ∧ p1[i]) ∨ (p0[i] ∧ p1[i])

7: end for

8: return r

�
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ite(b0, b1, b2)

∧

∧ ∧

b0b1 b2

ite(b0, b1, b2)

∧

∧ ∧

b0b1 b2

Figure 2.2: Two different AIGs corresponding to the propositional ITE. Hollow
circles negate the value travelling along an edge.

2.9 And-Inverter Graphs

The bit-blasted propositional formulae that we create are stored as and-inverter

graphs (AIGs). AIGs can store arbitrary propositional formulae in a non-canonical

form, so there may be many possible distinct AIGs for a given propositional func-

tion. Figure 2.2 shows two AIGs for the propositional ITE. AIGs are useful to us

because they give us structural hashing at the propositional level, and there are

advanced approaches for manipulating and transforming them [BB04].

AnAIG is a DAGwhere nodes correspond to logic gates, and the directed edges

to wires that connect the logic gates. There are four types of nodes: the unique

1 node which has no incoming edges, input nodes which also have no incoming

edges, output nodes which have at most one inward edge, and 2-input AND nodes.

The edges may be inverted, complementing the result of the source node. As an

AIG is built, structural hashing is performed so that there are no duplicates nodes.

The 1 node may only be connected to output nodes.

Sharing aware simplifications [BB06] are applied at node creation time. The

simple AIG structure makes it easy to apply local rewriting rules.

2.10 Propagators and Propagation Solvers

In chapter 4 we simplify bit-vector problems using an approach which is similar to

a propagator based solver.

Finite-domain constraint problems have been studied in different fields of com-

puter science, and different techniques have resulted. We shall make use of ideas
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developed in the field of artificial intelligence, namely Constraint Satisfaction Prob-

lems (CSPs) and propagation solvers.

Given a set of variables x1, . . . xk, ranging over some set X (say, the set of inte-

gers), a CSP is a constraint C over the variables, together with a mapping D which

associates, with each variable, a finite subset of X. In CSP terminology, the set D(x)

is the domain associated with x. A constraint is assumed to be in conjunctive form,

that is, C is taken to be a conjunction of primitive constraints. The CSP (C,D) then

represents the conjunctive constraint C ∧
∧k

i=1 xi ∈ D(xi). In our use, domains will

be integer intervals.

As an example, assuming that primitive constraints allow the use of linear

arithmetic and inequality, we may have C = (2 < x1) ∧ (x1 + x1 < x2), together with

domains D(x1) = [1 . . . 9],D(x2) = [4 . . . 8]. The idea now is to use local reasoning

rules to strengthen these constraints by narrowing the domains, without changing

the set of possible solutions. For example, “node consistency” allows the use of the

constraint 2 < x1 to narrow D(x1) to [3 . . . 9]. “(Hyper-)arc consistency” can then

use the constraint x1 + x1 < x2 and simple interval arithmetic to narrow D(x2) to

[7 . . . 8]. Slightly more sophisticated reasoning can make use of parity information

to determine x2 completely.

We call hyper-arc consistent propagators maximally precise propagators.

More generally, each primitive constraint (schema) C has associated with it a

set of propagators, prop(C). Each propagator may be able to narrow the domains

of the constraint’s variables. Formally, a propagator for C is a monotone function

f operating on domains and satisfying f (D) ⊑ D (that is, f is decreasing). The

propagatormust preserve the set of solutions toC∧D. If we defineµ |= D (“µ agrees

with D”) to mean ∀x ∈ dom(µ)(µ(x) ∈ D(x)) we can state solution preservation more

precisely: {µ | µ |= D ∧ µ |= C} = {µ | µ |= f (D) ∧ µ |= C}.

There is no requirement that a propagator is idempotent, that is, that f ( f (D)) =

f (D). However, the idea behind propagation is that, given a CSP, we can apply a set

of propagators, alternately and repeatedly, until no further domain improvement is

possible. We followOhrimenko et al. [OSC09] and refer to the resulting idempotent

function as a propagation solver.

These semi-formal definitions may leave the impression of a propagation solver

as an unstructured “soup” of propagators. In practice we can make use of domain
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specific knowledge to impose restrictions on the order inwhich various propagators

are employed, so as to use them most effectively. For example, we shall make use

of nested solvers, that is, solvers that use propagators which are themselves fully-

fledged propagation solvers.

Example 2.6

Consider (v[5]
0
× v[5]

1
) = v[5]

2
, where each variable is known to be in an unsigned

interval, initially: D(v0) = [1 . . . 2], D(v1) = [1 . . . 2], and D(v2) = [1 . . . 6]. There is

no possible overflow, and a standard propagator for multiplication will shrink the

domain of v2 to [1 . . . 4]. Note that, while there are assignments to v0 and v1 that

allow v2 to take values 1, 2, and 4, there is no assignment consistent with v2 = 3.

The strength of a propagator has to be measured with respect to properties of the

domains used. For example, the interval domain cannot express membership of a

set such as {1, 2, 4}. So, in spite of the information loss, themultiplication propagator

is still considered optimal, as it produces the best possible interval. �

18



3
Building a Better Bit-Vector Solver

S
INCE the annual SMT solver competitions (SMT-COMP) ([BDdM+12]) be-

gan in 2005, there has been a dramatic improvement in the best bit-vector

solvers’ performance. In this chapter we describe the implementation of a

high performance bit-vector solver called STP2. STP2 is open-source. The complete

source code is available online from STP’s source code repository.

Our solver is efficient; it won the QF BV division at SMT-COMP 2010. How-

ever, few other solvers competed in 2010 because the input language’s syntax had

changed since the prior competition. STP2 placed second in the QF BV division at

SMT-COMP 2011. STP2 placed third in the QF BV division at the SMT-COMP 2012.

In section 3.22 we describe 4Simp which placed second in the QF BV division at

SMT-COMP 2012.

We show later (section 3.22) that (at least on the problems we have selected)

the majority of STP2’s success is due to just a few simplifications. We use the

term simplification loosely to mean an equi-satisfiable transformation intended to

make a problem faster to solve. In this chapter we describe about twenty different

simplifications. However, we show that just a handful of those simplifications are

really useful. This is an important result, highlighting where authors of bit-vector

solvers should first focus their efforts. Of course, on different types of problems,

the relative benefit of each simplification differs.

STP2 solves problems expressed in the QF BV language described in section 2.3,

a quantifier-free first order theory of fixed-width bit-vectors. This language is

practically important because many software verification problems are expressible
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CHAPTER 3. BUILDING A BETTER BIT-VECTOR SOLVER

in it. We use the SMT-LIB2 bit-vector semantics, except that division by zero is

defined differently.

In this chapter we focus on bit-vector problems. In chapter 4 we detail a par-

ticular bit-vector theory-level simplification. In chapter 5, we solve problems in a

combined theory of arrays and bit-vectors.

3.1 STP 0.1 Overview

Vijay Ganesh and David Dill built the open-source STP 0.1 solver on which our

STP2 solver is based. STP 0.1 is described in Vijay Ganesh’s PhD thesis [Gan07],

and a conference paper [GD07].

STP 0.1 converts bit-vector problems to CNF eagerly, and arrays lazily. If no

array operations are used, then STP 0.1 acts as a compiler, converting bit-vector

problems into CNF (section 2.1). The eager approach of bit-blasting problems is to

create an equisatisfiable CNF encoding of the entire problem, which is then sent

to a SAT solver. This reduces a bit-vector theory-level satisfiability problem to the

propositional satisfiability problem (SAT). It contrasts with the lazy SMT approach

[Seb07] which repeatedly switches between the SAT solver and a theory solver.

STP 0.1 has three main contributions. First, and most important, it showed that

a well engineered bit-blasting bit-vector solver was competitive, and often supe-

rior, to other approaches. Second, it solved array problems via counter-example

guided abstraction-refinement (which we discuss in chapter 5). Third, it used a

partial solver in the simplification phase to determine some variables’ bits’ values

(section 3.5).

3.2 STP2 Overview

STP2, like STP 0.1, is a bit-blasting bit-vector solver. Primarily STP2differs fromSTP

0.1 in that extra simplificationphases, or pre-solving, are applied; the simplifications

are sharing-aware (section 2.7); and-inverter graphs (AIGs) (section 2.9) are used

to hold the bit-blasted representation; and a more sophisticated CNF encoding

approach is used.

STP2 can parse bit-vector and array constraints in the CVC3, SMT-LIB1, and

SMT-LIB2 formats. It then simplifies them and encodes them via AIGs to CNF.
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input Node creation

Sharing-aware simplifications

Speculative transformations

Clause count comparison: choose the problem that seems easier

Bit-blasting

CNF conversion

SAT solving sat/unsat

Sanity checking

Figure 3.1: Phases of STP2 when solving a QF BV problem

STP2, like STP 0.1, encodes bit-vector constraints eagerly, and can encode array

constraints lazily or eagerly.

STP2 preserves a copy of the input formula in memory, after structural hashing

(section 2.6), constant folding and term normalisation. If the formula is satisfiable,

as a check of its own correctness, STP2 substitutes the assignment found into the

original formula. STP2 always maintains the book-keeping required to verify a

satisfying assignment.

Broadly, STP2 simplifies constraints in two phases. In the first phase, simplifica-

tions that do not increase the number of expressions are applied. After they reach

a fixed point, a copy of the formula and book-keeping is made. Next, speculative

transformations are applied. These are transformations that could increase the total

number of expressions, but which may simplify the problem drastically. After-

wards, if the resulting transformed problem seems more difficult than the result

from the sharing-aware simplifications, then the expression is replaced with the

previously saved expression (section 3.7).

In more detail, the phases of STP2, which are shown in Figure 3.1 are:

• Parsing: The input is parsed, and quick local transformations that simplify the

problem are applied, as discussed in section 3.3.
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Start

Variable Elimination

Unconstrained Variables

Interval Analysis

Theory-Level Bit Propagation

Pure Literals

Partial Solver

Finish

While changing

Figure 3.2: Sharing-aware simplifications performed by STP2. The sequence is
repeated until they cause no change.

• Sharing-aware simplifications: Simplifications that do not increase the number

of expressions are applied.

• Speculative transformations: Simplifications that may increase the number of

expressions, such as distributing multiplication over plus are applied, as de-

scribed in section 3.6.

• Clause count comparison: A quick estimate of the CNF size of the problem

before and after speculative transformations is performed. The problem with

the smaller estimated CNF size is chosen, as described in section 3.7.

• Bit-blasting: Convert to AIGs, as described in section 3.8.

• CNF conversion: Convert the AIGs into CNF.

• SAT solving: STP2 can use Cryptominisat [SNC09], Simplifying Minisat 2.2,

or Minisat 2.2 [ES04] (the default) as a SAT solver. A DIMACS format CNF

file can be output which most SAT solvers can parse.

• Sanity checking: If the SAT solver returns a model, as a check, evaluate the

original formula with the model.
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3.3 Simplifications when Creating Expressions

Before a new expression is created, creation-time simplifications transform the re-

quested expression into an equivalent but potentially different expression. Creation-

time simplifications make it impossible to create some expressions. For instance,

it is impossible to create a term t[n] − t[n]. If such a term is requested, 0[n] will be

created instead. Many of the simplifications are highly specific, and will only apply

occasionally. Their value is based on the fact that they are cheap to apply, and

when applicable theymay help tremendously. A principle of the creation-time sim-

plifications is to produce few extra expressions. All creation-time simplifications

create at worst a constant number of extra expressions, irrespective of the requested

expression. STP2 applies more than 250 creation-time simplifications1.

Example 3.1

The rule ((t0%u t1)≫l t0) ⊲ 0 converts a termwith an expensive remainder operation

into a constant, resulting in a much smaller CNF encoding. If the arbitrarily com-

plex terms t1 or t0 exist nowhere else, then they are eliminated from the problem.

For the term (t2 × ((t0 %u t1) ≫l t0)), applying the rewrite rule will simplify it to

(t2 × 0), allowing the t2 term to be potentially eliminated, too (if it is not referred to

elsewhere). �

The creation-time simplifications are idempotent; the simplifications are applied

to the result before it is returned. That is, if any expression that is returned by

the creation-time simplifications is requested, then the same expression will be

returned. The following example will clarify this.

Example 3.2

If the term ((2 × t[n]) − (2 × t[n])) is requested, then the term 0[n] is created. The

(t[n] − t[n]) term, which is equivalent and simpler is not created. If (t[n] − t[n]) is

requested, 0[n] is created. The creation-time simplifications are idempotent, so re-

questing ((2 × t[n]) − (2 × t[n])) will not create (t[n] − t[n]). �

1The SimplifyingNodeFactory.cpp file in STP’s source-code repository contains the implementation.
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CHAPTER 3. BUILDING A BETTER BIT-VECTOR SOLVER

Some rules have as their main purpose to normalise terms.

Example 3.3

The equivalent terms (t[n] + t[n]), (2× t[n]) and (t[n] ≪ 1) are all converted to (2× t[n]).

This kind of normalisation increases the chance that occurrences of equivalent ex-

pressions will be identified, so that rewrite rules like (t[n] − t[n]) ⊲ 0, will apply more

frequently. �

We do not aim to achieve a complete normalisation of equivalent terms, just

commonly occurring ones. For example, one of the infinitely many equivalent but

different terms, which is not converted to (2 × t[n]) is: (t[n][n − 2, 0] :: 0[1]).

Some speculative transformations (section 2.7) are not applied at creation-time,

owing to their potential to dramatically increase the number of terms.

Example 3.4

Consider ((x bvxor y)[u, l]) ⊲ (x[u, l] bvxor y[u, l]), which can apply recursively. Ap-

plying this rule to the term ((t0 bvxor t1) bvxor (t2 bvxor t3))[4, 2], gives:

((t0[4, 2] bvxor t1[4, 2]) bvxor (t2[4, 2] bvxor t3[4, 2])).

In the worst case, the request for a single term has created seven terms (assum-

ing the natural numbers 4, and 2 are free). Therefore, such rules are not applied at

expression creation-time. �

Example 3.5

When creating a bit-vector exclusive-or term, the following rules are applied, where

≺ is some fixed but arbitrary total order on terms:

(c0 bvxor c1) ⊲ c2, where constants c0 and c1 evaluate to c2 (3.1)

(t1 bvxor t0) ⊲ (t0 bvxor t1), where t0 ≺ t1 (3.2)

(t bvxor t) ⊲ 0 (3.3)

(0 bvxor t) ⊲ t (3.4)
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(−1 bvxor t) ⊲ (bvnot t) (3.5)

(t0 bvxor (bvnot t1)) ⊲ (bvnot (t0 bvxor t1)) (3.6)

((bvnot t0) bvxor t1) ⊲ (bvnot (t0 bvxor t1)) (3.7)

�

We now describe different categories of simplification.

Constant Folding. Expressions that have only constant children are evaluated,

and a constant is returned. For instance, instead of creating the (6[5] + 3[5]), or

(−3[5] × −3[5]) terms, the term 9[5] is created. Equation 3.1 gives the rule for bit-

vector exclusive-or constant folding.

Replacing Operations. The QF BV language contains several similar operations.

For instance, the language contains: unsigned less than, unsigned greater than,

unsigned less than equals, and unsigned greater than equals. Using all of these

would require duplicate code in the solver. So instead, we convert all the unsigned

inequalities to unsigned greater than. Likewise the four signed inequalities are

all replaced by signed greater-than. Some other operations removed are: not-and,

not-or, Boolean-equals, Boolean implies, bit-vector rotate, and unsigned extension.

These operations are compactly replaced by other operations.

Commutative sorting. The children of commutative operations are sorted. The

children are put in three groups: constants, variables and other expressions. Each

group is thenordered (≺) basedonauniquenumber that is allocated to an expression

when it is created. Children are thenordered, startingwith constants, thenvariables,

then other expressions. Equation 3.2 is an instance of this normalisation.

Example 3.6

If the term ((bvnot t1) bvxor (bvnot t0)) is requested where t0 ≺ t1 ≺ (bvnot t1) ≺

(bvnot t0), assuming the creation-time rules are checked top to bottom, then:

1. The children are already sorted, so no change is made.

2. Equation 3.6 is applied. The term (bvnot ((bvnot t1) bvxor t0)) is requested.

3. The bit-vector exclusive-or’s children are sorted: (bvnot (t0 bvxor (bvnot t1))).
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4. Equation 3.6 is applied. The term (bvnot (bvnot (t0 bvxor t1))) is requested.

5. The simplified term (t0 bvxor t1) is returned.

�

Rewrite rules. Rewrite rules are applied at creation-time. They have three dif-

ferent purposes. First we have rules that necessarily produce fewer terms. Second

are rules that potentially increase the number of bit-vector terms by some fixed

amount, but improve sharing. Third are rules that potentially increase the number

of bit-vector terms, but produce an expression with a smaller CNF encoding.

The sharing aware rewrite rules return a sub-expression of the requested expres-

sion. Returning a reference to an existing expression requires no new expressions

to be created. A similar idea is applied during creation of AIGs by Brummayer and

Biere [BB06].

Example 3.7

Some instances of rewrite rules are:

• ((t[n] bvxor t[n]) ⊲ 0[n]). One term is requested, and at most one term is created

(the 0[n] term). This rule potentially increases the number of bit-vector terms,

but improves sharing. Also, the resulting term might have a smaller CNF

encoding. Whether the result of the rewrite rule actually has a smaller CNF

encoding depends on whether later simplifications would have simplified it

to zero anyway.

• ((bvnot t) ≫l −t) ⊲ ite(t = 0,−1, 0). One term is requested, and at most four

terms are created. However, the resulting term has a smaller CNF encoding.

• ((−1 × −t) ⊲ t). One term is requested, but no extra terms are created because

the rule returns a sub-expression of the requested expression.

�
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Example 3.8

If the term (t1 bvxor (bvnot t0)) is requested, then both (bvnot t0) and t1 already exist.

So returning the requested term will increase the total number of terms by at most

one. If the term already exists, there will be no increase.

After applying the creation-time simplifications, in particular Equation 3.6, if

t0 ≺ t1 then (bvnot (t0 bvxor t1)) is returned. Both t0 and t1 already exist, but the

bvxor term, and the bvnot term, might not, so the total number of terms is increased

by at most two. �

We found it advantageous to discover useful rewrite rules semi-automatically.

In section 3.11 we discuss an approach to do that.

After applying the simplifications, structural hashing is performed which re-

turns a reference to an existing expression if it already exists.

The creation-time simplifications achieve three goals. First, they eliminate

equivalent but different expressions, making it easier to implement other simpli-

fications. Second, eliminating equivalent but different expressions prevents those

expressions from being encoded separately to CNF, which would necessitate extra

SAT solver work. Third, simplifications can replace an expressionwith one that has

a smaller CNF encoding.

These same simplifications could be applied in a separate simplification phase.

However, applying them at creation-timemeans that the other simplifications reach

a fixed point faster, and are easier to implement because they operate on fewer

operations.

3.4 Variable Elimination

A variable can be eliminated from a problem if it is semantically equivalent to a

term, and the term does not contain the variable.

Example 3.9

Consider the formula (v[5]
0
= (v[5]

1
+ 6[5])). Because v0 is equal to a term which does

not contain v0, v0 can be eliminated from the problem by replacing it with (v[5]
1
+6[5])

throughout. Alternatively, v[5]
1

could be eliminated by replacing it with (v[5]
0
− 6[5]).
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After variable elimination, the formula becomes trivially satisfiable. �

Some expressions that are not equalities have the same effect as an equality—of

equating an expression and a variable. So, variable elimination is applied to more

than just equalities.

Example 3.10

In the formula ((v[5]
0

bvxor 6[5]) = 7[5]), v0 can be eliminated from the problem by

replacing it with 1[5] throughout. After elimination the formula becomes trivially

satisfiable. �

Example 3.11

Consider the formula ((v0 = 5)∨ ((v0 +v1) = (2×v0))). Neither v0 nor v1 can be elim-

inated because they appear under a disjunction, so are not necessarily equivalent

to a particular term. �

Suppose we have that v = t, where t is a term. The variable vmay be eliminated

from the problem by replacing it throughout by the term it equals.

This occurs when an equation is conjoined at the top level, i.e. ((v = t) ∧ p),

where the term t does not contain the variable v. Then, all occurrences of v in p are

replaced with t. For correctness, the variable is replaced throughout the problem

before other variables are eliminated.

Replacing the variables with expressions does not create a blow-up because a

single shared expression replaces the variable in each sub-expression.

Variable elimination has four advantages. First, it reduces the number of vari-

ables in the problem that are functionally related to each other. Second, eliminating

variables gives smaller CNF encodings because fewer equalities occur. Third, fur-

ther theory-level simplification might become applicable. Fourth, if there are no

other occurrences of the variable, then the expression it equals might disappear

from the problem.

We store away the equivalences of eliminated variables so that later, if required,

a model can be built.
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Example 3.12

Consider the expression ((v0 = −t) ∧ (v1 = −v0)), where t contains neither v0 nor

v1. Without variable elimination the CNF encoding contains clauses for two unary

minuses, two equalities, and the t term. After variable elimination, the problem is

simplified to 1, so the SAT solver is not called. If a model is needed, STP2 assigns

zero to the variables in t, and evaluates t with this assignment to calculate the as-

signments to v0, and v1. �

The variable elimination process is shown in Algorithm 3.1. It makes use of the

procedures defined in Algorithm 3.2 and Algorithm 3.3. The algorithm attempts

to isolate variables on the left-hand side of an equivalence, by iteratively moving

expressions to the right-hand side. It generates some of the equivalences that

are entailed by the original formula. Starting from the top-most expression, the

algorithm finds candidates where a variable is equivalent to an expression. An

elimination is allowed if the variable does not appear in the expression. Because of

the normalisation that occurs when expressions are created, there is no need for the

algorithm’s pattern matching to be exhaustive. For instance, a bi-implication is not

matched because it is converted to an exclusive-or at creation-time.

Replacing a variable by the term it equals will remove the equality expression.

That is, given (v = t), replacing v with t gives (t = t) which is simplified to 1 by

the creation-time simplifications. However, because other operations, such as bit-

vector exclusive-or, do not reduce to 1 so readily, the variable elimination algorithm

explicitly removes an expression which is used to eliminate a variable. This is

safe because replacing a variable throughout by the expression it equals, makes the

expression the equality was derived from redundant.

The variable elimination algorithm we give is not idempotent. For instance,

given the expression ((v1 × v0) = t) ∧ (v1 = 1), no elimination is performed when

traversing the left conjunct. On the right-hand side the elimination v1 = 1 is

generated. The result from variable elimination is: v0 = t, from which v0 might

be eliminated if variable elimination is run again. We run the variable elimination

algorithm as part of a series of simplifications (Figure 3.2) that are run until a fixed

point.
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Algorithm 3.1 The procedure for generating equivalences. This procedure is ini-
tially called with the top-most node of a problem.

Require: e // The current node
1: procedure searchAnd(e)
2: Create Boolean changed← 0
3: if e is a variable then

4: Eliminate with e ⇐⇒ 1
5: changed← 1
6: else if ematches (p0 ∧ p1) then
7: searchAnd(p0)
8: searchAnd(p1)
9: else if ematches (p0 ⊕ p1) then

10: changed← searchProp(e, 1)
11: else if ematches (¬p0) then
12: changed← searchProp(p0, 0)
13: else if ematches (t0 = t1) then
14: // Does not evaluate the second disjunct if the first is true
15: changed← searchTerm(t0, t1) ∨ searchTerm(t1, t0)
16: end if

17: if changed then

18: Replace ewith 1
19: end if

20: end procedure

Example 3.13

Consider applying the variable elimination algorithm (Algorithm 3.1) to (v0 =

v1) ∧ ((v0 + 6) = (2 × v2)). The algorithm calls itself recursively with each con-

junct. Eventually searchTerm(v0, v1) is called. Because v0 is a variable not con-

tained in the right-hand side, v0 is replaced throughout by v1. Since the formula

(v0 = v1) was used to eliminate a variable, (v0 = v1) is dropped from the prob-

lem. searchTerm((v1 + 6), (2 × v2)) is called soon after, which in turn calls both

searchTerm(6, ((2 × v2) − v1)) and searchTerm(v1 , ((2 × v2) − 6)). In the second case,

v1 has been isolated and so will be eliminated. The original expressions have been

replaced by 1, and the equations between variables stored so that models can be

constructed if needed. �

In the worst case, the algorithm has exponential running time in the number

of expressions. However, on the problems used in the evaluation (section 3.19) the

runtime is always reasonable. Because the encoding to CNF guarantees complete-

ness and since this is an anytime algorithm, to limit the worst case cost, an upper
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Algorithm 3.2 Sub-procedure for generating equivalences: dealing with terms. The
inverse function gives the multiplicative inverse of an odd constant.

1: procedure searchTerm(lhs, rhs)
2: Create Boolean changed← 0
3: if lhs is a variable and is not a sub-expression of rhs then
4: Eliminate with lhs← rhs
5: changed← 1
6: else if lhs matches −t then
7: changed← searchTerm(t,−rhs)
8: else if lhs matches (bvnot t) then
9: changed← searchTerm(t, (bvnot rhs))
10: else if lhs matches (t0 bvxor t1) then
11: changed← searchTerm(t0, (t1 bvxor rhs)) ∨ searchTerm(t1, (t0 bvxor rhs))
12: else if lhs matches (t0 + t1) then
13: changed← searchTerm(t0, (rhs − t1)) ∨ searchTerm(t1, (rhs − t0))
14: else if lhs matches (t0 × t1) and t0 is an odd constant then
15: // Creation-time simplifications ensure t1 is not a constant
16: changed← searchTerm(t1, (inverse(t0) × rhs))
17: end if

18: return changed
19: end procedure

Algorithm 3.3 Sub-procedure for generating equivalences: dealing with proposi-
tions (no top-level).

1: procedure searchProp(lhs, rhs)
2: Create Boolean changed← 0
3: if lhs is a variable and is not a sub-expression of the rhs then
4: Eliminate with lhs ⇐⇒ rhs
5: changed← 1
6: else if lhs matches p0 ⊕ p1 then
7: changed← searchProp(p0, (rhs ⊕ p1)) ∨ searchProp(p1, (rhs ⊕ p0))
8: else if lhs matches ¬p0 then
9: changed← searchProp(p0,¬rhs)
10: else if lhs matches (t0 = t1) ∧ bitwidth(t0) = 1 then
11: changed← searchTerm(t0, ite(rhs, t1, (bvnot t1)))
12: if ¬changed then

13: changed← searchTerm(t1, ite(rhs, t0, (bvnot t0)))
14: end if

15: end if

16: return changed
17: end procedure

bound can simply be placed on the algorithm’s number of iterations, or on running

time.
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Example 3.14

Consider the expression with four variables: v0 . . . v3, where Si, j are syntactic/term

variables, and Sr is the formula we create. For some k, construct:

S0,0 ← (v0 + v1)

S0,1 ← (v2 + v3)

S0,2 ← (S0,0 + S0,1)

Si,0 ← (Si−1,0 + Si−1,2), for 0 < i ≤ k

Si,1 ← (Si−1,1 + Si−1,2), for 0 < i ≤ k

Si,2 ← (Si,1 + Si,0), for 0 < i ≤ k

Sr ← (Sk,2 = 0)

For k > 1, variable elimination calls the searchTerm procedure (8 × 3k) times. For

k = 11, Sr has about 40 subterms and is equivalent to: 177147 × v0 + 177147 × v1 +

177147 × v2 + 177147 × v3 = 0. The searchTerm procedure is called about 1.4 million

times. �

Checking that a variable is not contained on the right-hand side is a poten-

tially expensive operation that variable elimination must perform. Some software

verification benchmarks are initially thousands of levels deep. With each vari-

able eliminated, the depth of the remaining terms might increase by as much as

the depth of the term that replaces the eliminated variable. Our implementation

performs caching to avoid repeated traversals of the same expression.

Example 3.15

We list some eliminations that are performedwhen the given expression is conjoined

at the top level. The variable v is a bit-vector variable, and b is a propositional

variable, v and p are not sub-expression of the other expressions.

• (−v = t). Replace v by −t.

• 5 − (3 × v) = t. Replace vwith ((1/3) × −(t − 5)).

• ¬(b ⊕ p). Replace b with the formula p.
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• (¬b). Replace b with 0.

• (p0 ⊕ (p1 ⊕ (b ⊕ p2))). Replace b with ¬((p0 ⊕ p1) ⊕ p2).

�

As an example of an equation that is left unprocessed, consider (v = (6 × (v + 1))).

Nothing is done in this case, although it would be correct to generate the equation

v = (−1/5)×6. This shows that more powerful variable elimination algorithms exist

than the one that we have given.

Unlike MathSAT [Fra10], we have not experimented with replacing extracts

from variables with the expressions they equal. For instance, given (v[u, l] = t) ∧ p,

MathSAT will eliminate part of v. The partial solver that we describe in the next

section will eliminate part of the variable in the special case when l = 0.

Variable elimination is widely applied by bit-vector solvers [Fra10, Gan07].

However, the algorithm that we have presented eliminates variables in situations

that other algorithms do not. Our method is obvious enough that is has surely been

applied in other contexts, although we believe its application to bit-vector solving

is novel.

3.5 Partial Solver

Barrett et al. [BDL98] reduce the bit-width of variables and the number of variables

in a problemwith equalities of a certain form. In Section 3.2 of Barrett et al. [BDL98]

they describe a linear solver for equations of the form:

c0 × v0 + . . . + ck × vk + c = 0

Here the c’s are constants, and the equation is at the top level. By using basic rules

of algebra, expressions of the form c0 × v0 are isolated on one side. If the constant

c0 is odd, both sides of the equality are multiplied by c0’s unique multiplicative

inverse, isolating v0. The variable v0 is then eliminated from the problem.

If the constant c0 is even, then it can be written as c0 = 2l × c′, where c′ is odd

and l > 0. The equality is then replaced by two equalities:

0[l] = (−c1 × v1 − . . . − ck × vk)[l − 1, 0] (3.8)
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v0[n − l − 1, 0] = (1/c′) × (−c1 × v1 − . . . − ck × vk)[n − 1, l] (3.9)

Equations of the latter form are used in turn to eliminate part of v0.

The “partial linear solver” [GD07] of STP 0.1 is more general; instead of restrict-

ing solving just to equations of variables, arbitrary terms can appear in equalities.

For instance STP 0.1’s partial solver can eliminate v, given ((7×v)+ t) = 0, where t is

an arbitrary term not containing v. This necessitates a check that v is not contained

in t. The partial solver of STP 0.1 is claimed to perform at most O(m2k) multi-

plications, where m is the number of equations, and k is the number of variables.

However, the algorithm’s total run time also includes time to check whether terms

contain a given variable, and to re-normalise equations after variable elimination.

These steps, which are necessary to run the algorithm, may consume significant

time.

STP2 preserves the partial solver of STP 0.1. As above, variable elimination

(section 3.4), eliminates a variable which has an odd coefficient. The variable elim-

ination algorithm additionally isolates variables contained in expressions with the

logical exclusive-or, bit-vector exclusive-or, single bit equality, and bit-vector not.

The partial solver, but not the variable elimination algorithm, solves for variables

in equations of the form c0×v0 . . .+ck×vk+c = 0, where all the c’s are even constants.

Similarly to Barrett et al. [BDL98], the algorithm reduces this to two equisatisfiable

equations, one of which has at least one odd coefficient. Also, the partial solver can

eliminate parts of variables; for instance it uses v[1, 0] = t to remove the lowest two

bits of v throughout the problem.

3.6 Speculative Transformations

STP2 applies speculative transformations until they reach a fixed point. We call

them speculative (section 2.7) because they might increase the total number of ex-

pressions. They do not necessarily reduce the difficulty of the problem as measured

by the size of the CNF encoding.

We have never found a problem for which the /spectrans do not reach a fixed-

point. However, such problems may exist.
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A common motivating example that speculative transformations simplify is:

(t0 × (t1 + t2)) , ((t0 × t1) + (t0 × t2))

which is false, but which in general is difficult for SAT solvers to establish.

STP2 uses approximately one hundred of STP 0.1’s normalisation rules, which

were substantially published when implemented in CVC Lite [GBD05]. The nor-

malisations increase the number of expressions by at worst a polynomial amount.

After applying the speculative transformations, to estimate whether the problem

has become easier we apply clause count comparison (section 3.7), and then discard

the changes if the problem seems harder.

Examples of the rules applied during the speculative transformations are:

• (t0 × t1)[u, l] ⊲ (t0[u, 0] × t1[u, 0])[u, l]

• (t0 × (t1 + t2)) ⊲ ((t0 × t1) + (t0 × t2))

STP2 has fewer speculative rules than STP 0.1. Some of the problems in the SMT-

LIB benchmarks grow large when the rules of STP 0.1 are applied. In some cases,

the growth exceeds the memory limit before the phase can be completed and the

transformations undone. Only some of the simplifications that are applied during

this phase give a worst case polynomial increase in node size. Others increase the

number of expressions by a constant amount.

We describe only these simplifications as speculative. But there is no guarantee

that the sharing-aware simplifications that we apply will make the problem easier

to solve. In particular, it is possible for a simplification to produce a problem which

is both smaller and harder for a SAT solver.

3.7 Clause Count Estimation and Comparison

The speculative transformations (section 3.6) sometimes make the problem larger.

In the worst case, they can cause a polynomial size increase in the number of

expressions. To estimate whether simplifications have made the problem easier,

STP2 estimates the number of CNF clauses that bit-blasting a particular expression

will produce. We call this clause count estimation. The number of clauses is estimated

twice, once before and once after the speculative transformations. This allows STP2
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to use whichever formula is estimated to produce the fewest CNF clauses. We use

the estimated number of clauses as a proxy for the difficulty of solving a problem. So

if, after speculative transformations, the estimated difficulty has increased, a copy

of the problem saved prior to applying the speculative transformations is used

instead. We call this clause count comparison. A similar, but more local, approach is

taken by AIG Rewriting [BB04].

Some expressions are encoded intomanymore clauses than others. For instance,

a 64-bit signed division operator introduces about 65,000 clauses (Table 3.8), but

the bit-vector negation operation introduces none. STP2’s clause estimator has a

weighting for each operation that estimates the number of clauses generated for an

operation of a particular bit-width.

The algorithmwe employ is not sophisticated or particularly accurate. We have

adjusted its parameters through trial and error. But as we show (section 3.20) it is

successful.

This approach has the advantage that the problem can be transformed through

a more difficult state, perhaps by distributing multiplication over addition, which

later drastically simplifies. If only transitions which decreased the difficulty were

allowed, then it would not be possible to transition through more difficult interme-

diate states.

A disadvantage of the approach is that if speculative transformations shrink one

part of the problem, and complicate another part, then the change will be accepted

or rejected in entirety, without considering the local effects.

Amore precise means ofmeasuring difficulty is to bit-blast the problem entirely

before and after speculative transformations. We do this for small instances. How-

ever, some crafted problems, in particular, have CNF encodings that are expensive

to generate. They require hundreds of millions of clauses before speculative trans-

formations, and afterwards require far fewer. It is inefficient to bit-blast such large

problems prematurely.

3.8 Bit-Blasting

Bit-blasting converts an expression into an equisatisfiable propositional formula.

We use bit-blasting in three contexts.
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• First, as a simplification step to identify theory-level expressions that are

equivalent to each other or to constants. These equivalences are used to

remove equivalent but different theory-level expressions.

• Second, as part of measuring whether other simplifications have made the

problem easier or not (section 3.7).

• Third, and most importantly, as a precursor to CNF encoding.

We use the open-source ABC package [BM10] to build the AIGs that are created

when bit-blasting. For each theory-level operation, we have built a procedure that

requests AIGs that faithfully represent the semantics of each bit-vector and logical

operation.

For bit-vector problems that aredeemedeasyby the clause estimator (section 3.7),

we bit-blast the problem once during the simplification phase. Performing bit-

blasting as part of the preprocessing has the advantage that it can be applied with

other simplifications until a fixed point, rather than as a final stage.

Bit-blasting can discover that some expressions have a constant value. This al-

lows the expression to be replaced with the respective constant. After requesting an

AIG corresponding to an expression, we traverse the AIG vector checking whether

each node is 1 or 0. If all the nodes are constants, then the theory-level expression

can be replaced by the corresponding constant.

We also use the AIGs to find theory-level expressions that are different but

equivalent. We call this bit-blasting equivalence checking. We do this by storing the

relationship betweenvectors ofAIG nodes and the theory-level expression that they

represent. After bit-blasting, we iterate through themap looking for pairs of distinct

expressions with the same AIG vector—these are equivalent. When equivalent

expressions are discovered, one of the expressions is substituted throughout for the

other expression. Using AIGs like this avoids the necessity of explicitly applying

some word-level rewrite rules.

Example 3.16

Some bit-blasting simplifications identified by this stage are:

• (t[5] >s (3
[5] bvor t[5])) is replaced by 0.
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• (00001)2 = (t[5] ≪ t[5]) is replaced by 0.

• ¬(1[3] >u (0[2] :: v[1])) is replaced by (1[1] = v[1]) if that expression exists else-

where.

• ((v[2] × v[2]) >s 3
[2]) is replaced by 1.

�

However, the most important use of bit-blasting is to produce a propositional

formula that, when converted to CNF, is fast to solve.

Using AIGs to store propositional formulae is good for two reasons. First, the

AIGs simplify the formula as it is constructed, for instance, AIG creation time sim-

plifications apply (p∧ p) ⊲ p, where p is an arbitrary propositional formula. Second,

because formulae are structurally hashed, sharing is performed between theory-

level operations. For instance, the propositional formulae for the least significant

bit of (t0 bvand t1), and (t0×t1) are identical, so theAIG representing the bit is shared.

The particular encodings chosen for bit-blasting bit-vector operations consid-

erably affect the solver’s speed. However, fast encodings are often specific to the

solver’s implementation. Because of this, like other authors, we omit a detailed de-

scription of the particular encodingswe chose2. An issue is that poor encodings can

be “repaired” by later stages. Poor encodingsmake later stages, for instance, a CNF

converter which can fix a poor encoding, look unreasonably good. As an indication

of the care we took: for each bit-vector operation we implemented several encod-

ings, for instance, 10 multiplication encodings and 8 division encodings. Then,

we applied parameter optimisation (section 3.18) to select the best combination of

those encodings.

3.9 Multiplication with Sorting Networks

In this section we describe an interesting approach to encoding the multiplication

operation using sorting networks. Our results with the new approach are disap-

pointing, as it is no faster than the standard approach of addition networks, but we

present the idea in the hope that others might advance it.

2The source code file Bitblaster.cpp in STP2’s source-code repository contains the encodings we
chose.
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x[3] ∧ y[0] x[2] ∧ y[0] x[1] ∧ y[0] x[0] ∧ y[0]

x[2] ∧ y[1] x[1] ∧ y[1] x[0] ∧ y[1]

x[1] ∧ y[2] x[0] ∧ y[2]

x[0] ∧ y[3]

r[3] r[2] r[1] r[0]

Figure 3.3: A 4-bit table of partial products. Column zero is on the right.

We encode multiplication using a table of partial products (Figure 3.3). This

figure shows the table for a multiplication of x[4] and y[4], with the result r[4].

The exclusive-or of each column is taken to produce the result. For instance, the

formula for the second least significant bit is: r[1] = (x[0]∧ y[1])⊕ (x[1]∧ y[0]) Note,

there is no x[3]∧ y[1] term used to calculate the value of r, which is ignored because

it overflows.

A common approach to the summation of partial products is to capture the

sum of a column by encoding it as some kind of addition network [ES06]. This

corresponds to treating a column sum as a number in binary representation.

For 32 or 64-bit multiplication, there is a small upper bound on how large a

column sum gets, even when carry-in is included. This makes it feasible to treat a

column sum as a number in unary representation, which we had anticipated would

lead to better constraint propagation. In this case summation becomes sorting and

some kind of sorting network is called for in place of addition networks.

Given u inputs to a sorting network, a sorting network produces an output

where, given ℓ true inputs, the outputs s[0] to s[ℓ − 1] are 1, and the remainder s[ℓ]

to s[u − 1] are 0. Note that we want a sorting network to produce a bit sequence

in non-increasing order, so the basic building block is the comparator shown in

Figure 3.4.

To capture a sorting network we encode the method underlying Batcher’s odd-

even mergesort [Sed98]. Figure 3.5 shows the corresponding sorting network for
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a

b

c

d

c↔ a ∨ b
d↔ a ∧ b

Figure 3.4: A comparator and equations that describe it

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Figure 3.5: Batcher’s odd-even sorting network (for 16 input bits)

16 input bits.

Batcher’s algorithm is non-adaptive: merging is expressed in terms of compare-

exchange operations only. As a consequence, the same sequence of operations

happen irrespective of input. This makes the algorithm suitable for the purpose of

CNF generation.

As carries into a columnweuse each second sorted value from the prior column.

Batcher’s sorting network is based on merging sorted values, so we are able to

avoid re-sorting the carries which are already sorted. That is, we merge the sorted

sequence {s[1], s[3], · · · , s[u− 1]}with the sorted sequence of partial products for the

next highest column.

The (binary representation) result r of themultiplication is now easily found: bit

i should be the parity of the number of bits in column i. If there are an odd number

of bits set, then the result is 1, if there are an even number the result is 0. So if u

is even, the equation for the resulting bit is (((s[0] ∧ ¬s[1]) ∨ (s[2] ∧ ¬s[3]) ∨ (s[4] ∧

¬s[5]) ∨ . . . ∨ (s[u − 2] ∧ ¬s[u − 1]))⇔ r[i]).

After encoding to CNF however, we did not find the sorting network encoding

to be consistently faster than an addition network encoding. As we show later, in

section 4.10, the unit propagation of the addition network encoding of multiplica-

tion is surprisingly strong.
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3.10 CNF through Technology Mapping

In section 6 of their paper, Eén, Mishchenko, and Sörensson [EMS07] describe an

encoding of AIGs to CNF, which they call CNF through technology mapping (TM). An

implementation is available in the open-source ABC package [BM10].

STP2 uses ABC to manage AIGs and to convert those AIGs to CNF. ABC has

two ways to convert AIGs to CNF. First, via a slightly improved [EMS07] Tseitin

encoding, and second via the TM approach. STP 0.1 did not use AIGs, it used an

implementation that we show (section 3.20) to be much less efficient.

The basic idea of the TMalgorithm is to break theAIG into subgraphs of nomore

than k inputs, such that the sum of clauses needed to represent the subgraphs is

minimised. Depending on their structure, subgraphs require differing numbers of

clauses to represent them. For instance, an 8-input AIGdenoting the “and” function

can be representedwith as few as 9 clauses, but many other functions require more.

A partition of the AIG into subgraphs is chosen that heuristically minimises the

number of clauses needed. The clauses that represent each possible subgraph are

pre-generated via Minato-Morreales’s algorithm [Min92].

Using ABC to manage AIGs, and to convert those AIGs to CNF, means that

STP2 does not precisely control the clauses that are asserted. Some tools, for

example Minisat+ [ES06], explicitly add extra clauses to the CNF to improve unit

propagation. The extra clauses allows unit propagation to force entailments that

are otherwise opaque and require search to discover. CNF representationswhich are

maximally precise (section 2.10) underunit propagation have been created formany

operations [Bac07]. We show later (Table 3.8) that ABC does a good job; it generates

CNF that is maximally precise under unit propagation for some bitwise operations.

However, the disadvantage is that we lose control over the CNF encoding, we

cannot easily specify better encodings for particular operations.

3.11 Discovering Rewrite Rules

Initially, we discovered rewrite rules on an ad-hoc basis, implementing more than

100 rewrite rules. When STP2 solved a problem slowly, we looked through the

problem for sub-expressions that could be simplified. However, to avoid missing
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important rules, we instead decided to automatically discover extra rewrite rules.

In this section we refer to term rewriting concepts introduced in section 2.5.

We applied two approaches to generating rewrite rules. The first and simpler

approach helped us to find useful rewrite rules. We generated all the equalities

between a set of expressions and implemented as rewrite rules any that seemed

reasonable. We automated just the process of discovering equivalences.

To discover equivalences, we automatically generate disequalities in a fragment

of the QF BV language. Then we send those disequalities to STP2, if STP2 reports

that the disequality is unsatisfiable, then for that bit-width the equality is sound.

If the equality holds, we then check whether the equality holds at some higher

bit-widths. Of course, the equality might not hold at lower or higher bit-widths.

The second approach that we tried, but which unfortunately did not generate

any useful rewrite rules, was more automated and generated rewrite rules rather

than just equivalences. We give details of this in subsection 3.11.2. Wewere inspired

to automatically generate rewrite rules by Bansal [Ban08], who generates rewrite

rules to build a super-optimiser.

3.11.1 Finding Equivalences

In this section we give an approach to automatically discovering equivalent (but

different) terms. We apply Algorithm 3.4 to discover equivalent expressions from a

list of expressions. The algorithm is an optimised version of an all-pairs comparison.

If the SAT solver discovers that two expressions’ values differ for some assignment,

then all the expressions in the list of expressions are evaluatedwith that assignment,

splitting the list into at least two sub-lists.

Algorithm 3.4 has two procedures. The algorithm is started by calling the dis-

cover procedure. The discover procedure considers each pair of distinct expressions

from the list. If the SAT solver discovers that there exists an assignment for which

a pair of expressions evaluate to different values, then the algorithm calls the split

procedure using that model. The algorithm widens the bit-width to check that the

two expressions are equivalent on a range of bit-widths.

The split procedure splits the list into sub-lists where the terms in each list

evaluate to the samevalue onanassignment. As the list is recursively split, the terms

in each list have been shown to be equal at an increasing number of assignments.
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Algorithm 3.4 Given a list of expressions, output expressions that are equivalent
between the bit-widths of low and minimum. If time permits, check to a maximum
bit-width of 1024. Calling discover checks all pairs of expressions contained in the
list of expressions.

Require: list // a list of bit-vector terms of bit-width n
Require: assignment // a map from variables to integers
1: procedure Split(list, assignment)
2: Create newLists, a map from integers to lists of expressions
3: for e ∈ list do
4: newLists[eval(increase(e), assignment)].insert(e)
5: // Evaluate the expression ewith the assignment. Place each expression

that evaluates to the same integer into the same list. It might be necessary to
increase the bit-width of e to match the bit-width of the assignment.

6: end for

7: return newLists
8: end procedure

Require: start // the bit-width to start testing expressions
Require: minimum // the least bit-width to test to
9: procedure Discover(list)
10: for i in 0 . . . (size(list) − 1) do
11: for j in 0 . . . (i − 1) do
12: for k in start . . . 1024 do
13: if (k > minimum)∧ has timed out() then
14: break

15: end if

16: Changes the bit-width of list[i] and list[ j] to k
17: if SAT solve(list[i] , list[ j]) is satisfiable then
18: Set assignment to be the model from the SAT solver
19: for all l ∈ Split(list, assignment) do
20: Discover(l)
21: end for

22: return

23: end if
24: end for

25: // The disequality is unsatisfiable at all the bit-widths tested
26: Output (list[i] = list[ j]) // Some duplicates output
27: end for

28: end for

29: end procedure

Note that Algorithm 3.4 splits using assignments at a range of bit-widths. If the

expressions first differ at a bit-width of k, then the list will be split after temporarily

increasing the bit-width of all the terms in the list to k bits.

We generated all subgraphs of the expression template given in Figure 3.6. There

are three possible unary expressions: no-operation, unary minus, or bit-vector not.
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Unary

Binary

Unary

LeafLeaf

Unary

Figure 3.6: Expression instantiation template. We instantiate all possible subgraphs
of this graph. There are 5 possible leaves, 3 possible unary operations, and 14
possible binary operations.

There are 14 different binary operations: addition, multiplication, bit-vector or,

bit-vector and, bit-vector exclusive-or, leftshift, logical right shift, arithmetic right

shift, subtraction, unsigned remainder, signed remainder, unsigneddivision, signed

division, and signed modulus. We allow only five possible leaves: v[n]
0
, v[n]

1
, 0, 1,

and -1. We generate expressions at a bit-width of 6, which allows a reasonable

but not excessive number of constants. After applying the node creation-time

simplifications (section 3.3) then removing duplicates, STP2 r1654 identifies 1570

unique expressions. Of these about 200 are equivalent at the bit-widths we tested.

The rewrite rules that are not applied at creation time are mostly omitted because

they might increase the total number of terms. Many of these are performed

implicitly by other simplification phases.

Example 3.17

Two equivalences that are discovered, which are not amongst the creation-time

simplifications are:

• (1 bvxor t) ≡ (bvnot (−2 bvxor t))

• (t0 + (bvnot t1)) ≡ (bvnot (t1 + −t0))

�

Some equivalences are expensive to verify. It takes about aminute to test at each

bit-width between 6 bits and 19 bits for:

−(−1 %u v) = −((bvnot v) %u v)
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Unary

Binary

Unary

LeafLeaf

Unary

Unary

Binary

Unary

LeafLeaf

Unary

Binary

Figure 3.7: Expression instantiation template. We instantiate all possible subgraphs
of this graph. Again, there are 5 possible leaves, 3 possible unary operations, and
14 possible binary operations.

3.11.2 Automatically Building a Rewrite System

Given the success in automatically generating equivalences, we decided to expand

to automatically the work to convert equalities into rewrite rules. Informally, a

rewrite rule is an equality that has been ordered so that it transforms amore complex

expression into a simpler expression. We convert some equalities into rewrite rules.

To reduce the number of redundant rewrite rules, we rewrite all the subterms of

the left and right-hand side of each rule. A term t is in normal formwith respect to a

set of rewrite rules, if no left-hand sides of any rewrite rule matches the subterms of

t. A rule is irreducible if its left and right-hand sides are in normal formwith respect

to the set of rewrite rules (excluding itself). We produce only irreducible rules. For

instance, given two rules t0 ⊲ t1 and t2 ⊲ t3, if t2[σ] equals t0, then we replace t1 with

t3[σ].

The subgraphs of Figure 3.7 are input to the checking algorithm (Algorithm 3.4).

We define t0 >r t1 to hold in two cases:

• If t0 is not a constant, but t1 is a constant.

• If t1 is a proper subterm of t0.

If the ordering >r does not hold on the rewritten rule, the rule is removed.

We use commutative matching to reduce the number of rewrite rules needed.

With commutative matching every possible ordering of commutative operations’

operands is considered when the matching is occurring. So for instance, the rule

((t + (bvnot t)) ⊲ −1) matches both (v + (bvnot v)) and ((bvnot v) + v).
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We generate subgraphs of the template expression shown in Figure 3.7.

After applying the node creation-time simplifications (section 3.3) and the AIG

equivalence simplification (section 3.8) then removing duplicates, there are about 30

million distinct expressions. We generate expressions at a fixed bit-width, currently

6 bits, and use sign-extension to increase the bit-width of constants.

It is not possible to apply an infinite sequence of rewrite rules to a term, be-

cause clearly, the number of sub-terms in the rewritten (the resulting) term strictly

decreases.

After generating the rewrite rules, we test each equivalence at bit-widths from

6 bits to 1024 bits with a total timeout of 30 seconds. For instance:

((bvnot (−2 ÷s (bvnot v)))≫l (bvnot (v≪ −v))) = 0

holds for bit-widths from 6 to 63 bits, but it does not hold at a bit-width of 64. We

do not test expressions for equivalence below a lower bound, currently 6 bits. We

remove rules that do not hold at some bit-width.

We generate expressions and check if they are equivalent at some bit-widths

using SAT via STP2. These problems are instances of the combinatorial equiva-

lence checking problem, for which specialist solvers exist [KJJP09]. An alternative

approach would be to combine some axioms of the QF BV system to produce new

theorems; this approach is not bit-width dependent.

UsingAlgorithm 3.4, we discovered about 120,000 rewrite rules in about 60 days

of computer time. We stopped the algorithm before it finished. We show a selection

of the rules thatwere discovered in Figure 3.8. Note that the number of rewrite rules

needed is reduced significantly by the node creation-time simplifications. The rules

that are generated are what we call sharing-aware (section 2.7). Expressions such

as if-then-else expressions occur in the rewrite rules because some creation time

transformations produce these expressions rather than the requested expression.

Running the rewrite rules on a random sample of 200 of the QF BV benchmark

set, no rules matched. So the rewrite rules we discovered are not useful for solving

those problems.

In order to check that we did not miss important rewrite rules, we automatically

generated a rewrite system. However, the rules we generated did not match any
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terms of our test problems. This shows that the common approach, of building

rewrite systems by hand, produces good rewrite systems.

3.11.3 Summary

We found automatically generating equivalences useful to inspire new rewrite

rules. For instance, initial versions of our creation-time simplifications omitted

Equation 3.6. The equivalences we generated contained terms we realised would

be simplified by the rule, so we implemented it.

In the first approach we manually inspected the proposed rules, and convinced

ourselves that they are correct. In our second approach we recorded the bit-width

intervals at which we tested each equivalence, and only applied the rewrite rule to

expressions of a bit-width in that interval.

We had less success with automatically generating rewrite rules. The rules

we generated applied occasionally to randomly generated problems but not to the

evaluation problems. As shown in Figure 3.8, a large proportion of the rewrite rules

contain constant values on the left hand side. As later work, omitting rules with

constants on the left hand side might generate a more applicable rewrite system.

3.12 AIG Rewriting

WhenSTP2 converts fromabit-vector theory formula to propositional logic, it stores

the propositional formula as an AIG (section 2.9).

An approach to simplifying AIGs is to use AIG rewriting [BB04]. AIG rewriting

performs local sharing-aware rewrites to the AIG, so that each rewrite does not

increase the total number of AIG nodes. Representations with an equal number of

nodes may contribute differently to the total number of nodes if one representation

contains a subgraph that is used elsewhere in the AIG. Mishchenko et al. [MCB06],

similarly to Bjesse et al. [BB04], measure the change in node count as functionally

equivalent nodes replace each 4-input subgraph. Their rewriting is a greedy algo-

rithm that reduces the AIG by iteratively replacing AIG subgraphs with equivalent

but smaller pre-computed subgraphs, then selecting those replacements that reduce

the total number of nodes. AIG rewriting is local, but its scope is enhanced by ap-
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Figure 3.8: Twenty randomly selected rewrite rules that were automatically gen-
erated by Algorithm 3.4. Note that rules are given at a bit-width of 6, but can be
safely widened to any larger bit-width for which they have been tested.

plying rewriting iteratively. We use the implementation from the open-source ABC

tool [BM10].

Brummayer and Biere [BB06] give creation-time rules for AIGs that perhaps

simplify, but never increase the total number of nodes. These rules are implemented

in ABC, for instance, b is created instead of (b ∧ b).
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3.13 Boolean Abstraction AIG Rewrite

Observing that it is potentially expensive to apply AIG rewriting to the entire bit-

blasted problem, we instead apply AIG rewriting just to the Boolean abstraction

of a problem, sometimes called the propositional skeleton. We build an AIG that

corresponds to the logical operations in the problem. Bit-vector theory predicates

are replaced by fresh Boolean variables. Boolean variables map to themselves. This

is the “Boolean abstraction of the input formula” used by DPLL(T) approaches

([Seb07] section 2.2).

Example 3.18

Given the expression ((v0 = 0)∨ ((v0 = 0)∧ (v1 = 1)∧ (v2 ≤s 2)), each of the predicates

are mapped to fresh Boolean variables and substituted, giving (b0 ∨ (b0 ∧ b1 ∧ b2)).

AIG rewriting simplifies this to b0, which after substitution back is (v0 = 0). �

After abstraction, we apply AIG rewriting to the resulting AIG. Then, the AIG

is converted back to a bit-vector theory expression, and the introduced Boolean

variables are replaced with the predicates they substituted for. The intention is for

the AIG rewrite to simplify the Boolean abstraction, perhaps removing theory-level

expressions.

The system description for Boolector submitted to SMT-COMP 2012 mentions

a top-level Boolean-skeleton simplifier, which we understand is an independent

implementation of the idea in this section.

3.14 ITE Transformations

Kim et al. [KSJ09] simplify if-then-elses (ITEs) before applying a linear arithmetic

solver. Their idea is that a term which is reachable via the “true” branch of an ITE

can have any subterm that it shares with the ITE’s conditional replaced by 1. Shared

subterms that are reachable via the “false” branch can likewise be replaced by 0.

We implement a variant of their approach, shown here as Algorithm 3.5.

The algorithm keeps a context of the conditions that must be 1 or 0 at a particular

expression. Initially, at the root node, the context is empty. When we encounter

an expression ite(p, t0, t1), execution is forked, with p being added to the context
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Algorithm 3.5 ITE simplification algorithm. Initially the procedure is called with
the root node and an empty context.

1: procedure replace known(e, context)
2: if (e ∈ context) then
3: return 1
4: else if (¬e ∈ context) then
5: return 0
6: else if size(context) > maximum size then
7: return e // Limit to prevent blowup
8: else if ematches ite(p, t0, t1) then
9: return ite(replace known(p, context), replace known(t0, context ∪

p), replace known(t1, context ∪ (¬p)))
10: else

11: Create simplified, a new expression
12: Let the type of simplified be the same as e
13: for each child c of e do // Add another child to the new expression
14: simplified.addChild(replace known(c, context))
15: end for

16: return simplified
17: end if

18: end procedure

before t0 is visited, and ¬p before t1 is visited. If a formula that is in the context is

encountered, it is replaced by 1 or 0, as appropriate.

Example 3.19

Consider the expression (ite(p0 ∧ p1, ite(p0, v, 3), 5) = 5). (p0 ∧ p1) is added to the

context before the true branch of the outermost ITE is traversed, and ¬(p0 ∧ p1) is

added before the false branch is traversed. The condition of the innermost ITE, (p0),

is evaluated in the context (p0 ∧ p1) and evaluates to 1, so it is replaced by 1. The

simplified expression is: (ite(p0 ∧ p1, v, 5) = 5) �

This transformation just replaces formulae with 1 and 0. It does not do more

elaborate transformations. For example, it leaves the expression ite((t <u 6), (t <u

7), t = 6) unchanged, although it is equivalent to (t ≤u 6).
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Example 3.20

As an example of the worst case behaviour, consider the following conjuncts, where

S0 is the root node, and S1 to S4 are syntactic variables:

S0 = ite(p0, (bvnot S1),−S1)

S1 = ite(p1, (bvnot S2),−S2)

S2 = ite(p2, (bvnot S3),−S3)

S3 = ite(p3, (bvnot S4),−S4)

S4 = ite(p4, v
[n]
0
, v[n]

1
)

Both v0 and v1 can be reached via the true and false branches of 4 ITEs. So there

are 16 distinct contexts that can reach v0, and 16 that can reach v1. �

The transformation is expensive because it considers the path through all the ITE

nodes between an expression and the root node. That is, each extra ITE expression

on the path from the root node doubles the number of node contexts. In the worst

case, this creates 2i contexts, where i is the number of ITE nodes. If a depth-first

traversal is performed then space proportional to the depth of the ITE expressions

is needed.

Other algorithms can find more substitutions than Algorithm 3.5 deduces. For

instance, ROBDDs[Bry86] allow entailments that are missed by our algorithm to be

deduced. However, such data structures are more expensive to maintain during

traversal of the expression. Also, they are not perfect; like our algorithm they

operate on the expression’s Boolean abstraction.

3.15 Unconstrained-Variable Simplification

Bruttomesso [Bru08] and Brummayer [Bru09] both provide rules to simplify ex-

pressions that contain unconstrained variables. Some expressions containing un-

constrained variables are eliminated by replacing them with fresh variables.

An unconstrained variable is onewhich has a single edge from a parent expression

in theDAG representationof the problem. If the parent of an unconstrainedvariable

can take any possible value, then the expression can be replaced by a fresh variable.

Because thenewly introduced freshvariablemight also beunconstrained, theparent
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of the recently introduced fresh variable can sometimes be replaced by a fresh

variable too.

Example 3.21

Consider (v+ 1), and assume this is the only use of v. Then, the occurrence of (v+ 1)

can be replaced by a fresh variable. �

The unconstrained variable simplification replaces an expression t with a fresh

variable v. It can be applied if two conditions are satisfied: first, t can vary inde-

pendently of the rest of the problem, and second, t denotes a surjective function,

that is, t can yield any value in its range.

Example 3.22

Consider a sub-expression v = t, where v occurs nowhere else. This equation can

be replaced by a fresh Boolean variable because the equality can evaluate to 1 or

0, that is, whatever is required to ensure the problem is satisfiable. If the equality

must be 1, then v can be assigned t’s value, otherwise it can be assigned something

different from t, such as (t + 1). �

Example 3.23

Consider the expression (v[1] :: v[1]), where these are the only occurrences of the

variable v[1]. There are some values this expression cannot produce, for instance

(10)2. Even though v has only a single parent, it has two edges from that parent. So

the expression cannot be replaced by a fresh variable. �

Example 3.24

Brummayer [Bru09] considers the sub-expression ((v0 + t) = (v1 bvand v2)). Assume

these occurrences of v0, v1, and v2 are the only ones, while t is an otherwise arbitrary

term. Because (v1 bvand v2) can evaluate to any value, it can be replacedwith a fresh

variable v3, giving (v0 + t) = v3. Because (v0 + t) can evaluate to any value, it too can
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be replaced by a fresh variable, giving (v4 = v3). This can evaluate to either 1 or 0,

so can be replaced by a fresh propositional variable b. The sub-expression can be 1

or 0, depending on what is required to make the problem satisfiable. �

Bruttomesso [Bru08] describes the simplification applied to bit-vector problems.

Brummayer independently developed the simplification, and gives the rules for

the array variant, which he describes in section 3.4 of his thesis [Bru09]. Franzén

[Fra10] gives the rules to build a model for the original problem from amodel to the

simplified problem. Following Franzén, STP2 keeps mappings between variables

so that a model to the original problem can be calculated.

Most of the rules are straightforward; we give the rules in Table 3.1. Inequalities

are complicated because of the possibility that they are necessarily 1, such as v ≥ 0,

or necessarily 0, such as (v[3] >u 111), where v is unconstrained. Multiplication by

a constant is complicated because only odd constants have a unique multiplicative

inverse. Table 3.1 omits some of the operations in the language (section 2.3), because

they are removed at creation-time.

In Table 3.1 the “Model” column gives the expressions that produce a model for

the original problem given a model for the transformed problem. They produce a

model, not every model.

STP2 also analyses the extracts from variables: if all of a variable’s parents are

extract expressions, and all of the extract expressions select different bits of the

variable, then each extract expression is replaced by a fresh variable.

Example 3.25

Suppose a problem contains just two references to v[20], namely v[20][15, 13] and

v[20][12, 2] . Because the extracts do not overlap, and there are no other references

to v, each extract could be replaced by a fresh variable. �

Because applying the unconstrained simplification is based on the syntactic

appearance of terms, only some equivalent terms will be simplified. The rules of

Table 3.1 will for instance replace ite(p, b0, b1), where p and b1 are unconstrained,

with a fresh variable. However, the different but equivalent expression ((p =⇒

b0) ∧ ((¬p) =⇒ b1)) will be left unchanged.
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Expression Condition Replacement Model
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Table 3.1: Rules for the unconstrained variable simplification. unc is a predicate
returning 1 iff its operand is avariable and is unconstrained. v is a freshvariable. The
table lists one rule for some commutative operations (e.g. xor); for these operations
the rules are applied with the operands reversed, too. Starting from the top, use the
first rule that matches the expression. “min” and “max” are the signed or unsigned
minimum and maximum values for the appropriate bit width, respectively. We
give the rules only for term ITEs, they are similar for propositional ITEs.

There are cases which a more sophisticated algorithm could simplify. For in-

stance, assume v does not occur elsewhere and consider: ite(p, (v + t) = 6, v = 4),
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((v ÷u 10) <u 2), or ((v < 10) ∧ (v > 2)). All of these expressions denote surjective

functions, so can be replaced by a fresh variable.

3.16 Pure Literal Elimination

We perform pure literal elimination to identify Boolean variables that can be set to

a constant. Initially, this approach was called the affirmative-negative rule [DP60].

Pure literal elimination over graphs has also been called monotone input reduction

[JBH10]. Algorithm 3.6 calculates the polarities for each expression in a problem.

This algorithm replaces any Boolean variable that has a polarity of TRUE with the

1 expression, and any Boolean variable with a FALSE polarity by the 0 expression.

3.17 Interval Analysis

STP2 performs a bottom up unsigned interval analysis. We use standard rules to

derive the bounds of operations. The bounds for logical operations are given by

Warren [War02], the bounds for integer arithmetic operations are standard and can

be found in constraint programming textbooks, e.g., Marriott and Stuckey [MS98].

During the analysis, any expression that has the same lower and upper bound is

replaced by the corresponding constant expression.

In chapter 4 we investigate a more sophisticated variant of this.

The interval analysis is fast and imprecise. We do not take care to ensure that

the bounds produced are as tight as possible. The outline of the algorithm that we

use, and the implementation for some of the operations is given as Algorithm 3.7.

3.18 Parameter Optimisation

SMT solvers, like other decisionprocedures, often havemany configuration options.

For instance Z3 version 3.0 has 284 configuration options [dMP12]. STP2 has fewer,

perhaps 30 that can be changed via the command line, but there are dozens more

in the source code.

Parameter optimisation aims to find a good assignment to the configuration

options of a decision procedure on some set of problems. To decide which simplifi-

cations to enable, we applied the parameter optimisation tool ParamILS [HBHH07,
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Algorithm 3.6 Pure literal elimination. replace is called initially with the root
expression. It replaces any Boolean variable with a TRUE polarity by 1, and FALSE
by 0. The possible polarities are TRUE, FALSE, and BOTH.

Require: e // The current expression
Require: current // The polarity of the current expression
Require: pol← {} //Maps from an expression to its polarity
1: procedure calculate polarity(e, current, pol)
2: if pol[e] = TRUE ∧ current , TRUE then
3: pol[e]← BOTH
4: else if pol[e] = FALSE ∧ current , FALSE then
5: pol[e]← BOTH
6: else if pol[e] , BOTH then
7: pol[e]← current
8: end if
9: if ematches (p0 ∧ p1) then
10: calculate polarity(p0, current, pol)
11: calculate polarity(p1, current, pol)
12: else if ematches (p0 ∨ p1) then
13: calculate polarity(p0, current, pol)
14: calculate polarity(p1, current, pol)
15: else if ematches (¬p) then
16: if current = BOTH then
17: calculate polarity(p,BOTH, pol)
18: else if current = TRUE then
19: calculate polarity(p, FALSE, pol)
20: else
21: calculate polarity(p,TRUE, pol)
22: end if
23: else
24: for each child c of e do
25: calculate polarity(c,BOTH, pol)
26: end for
27: end if
28: end procedure

29: procedure replace(e)
30: Create pol, a map from expressions to their polarity
31: calculate polarity(e,TRUE, pol)
32: for all (b, polarity) ∈ pol do // Iterate over all Boolean variables
33: if polarity = TRUE then
34: Eliminate from e, with b ⇐⇒ 1
35: else if polarity = FALSE then
36: Eliminate from e, with b ⇐⇒ 0
37: end if
38: end for
39: end procedure

HHLBS09]. ParamILS performs a hill-climbing search with random restarts to se-

lect a good, but probably not optimal, combination of parameters for a solver. We

ran ParamILS with STP2 on a selection of problems both from the SMT-LIB library

and from STP2 users. Three of the simplifications that we have discussed so far
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Algorithm 3.7 Unsigned interval analysis with some operations omitted. Initially,
the calculate interval procedure is called with the root expression, and empty
lower and upper maps.

Require: e // The current expression
Require: lower //Map from expressions to the lower bound
Require: upper //Map from expressions to the upper bound
1: procedure calculate interval(e, lower, upper)
2: if e ∈ lower then
3: return // Expression has already been evaluated. Only visit once.
4: end if

5: for each child c of e do calculate interval(c, lower, upper)
6: end for

7: Create integer u← 2bitwidth(e) − 1 // assign 1 for formulae
8: Create integer l← 0
9: if ematches true then
10: l← u← 1
11: else if e matches (bvnot t) then
12: l← (bvnot upper(t))
13: u← (bvnot lower(t))
14: else if e is a constant then
15: u← l← toInteger(e)
16: else if e matches (t0 = t1) then
17: if (lower(t1) > upper(t0)) ∧ (lower(t0) > upper(t1)) then
18: l← u← 0
19: end if

20: else if e matches (t0 + t1) then
21: if (upper(t1) + upper(t0)) does not overflow then

22: l← lower(t0) + lower(t1)
23: u← upper(t0) + upper(t1)
24: end if

25: else if e matches ite(p, t0, t1) then
26: l← min(lower(t0), lower(t1))
27: u← max(upper(t0), upper(t1))
28: end if
29: if l = u then

30: Replace e by constant l
31: end if

32: upper(e)← u
33: lower(e)← l
34: end procedure

are disabled by default in STP2: AIG rewriting (section 3.12), AIG rewriting of the

Boolean abstraction (section 3.13), and ITE Simplifications (section 3.14).

Whenwegive the results in the next section (section 3.19), we show that enabling

AIG rewriting solves extra problems. Because the test set that we use in our
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evaluation differs from the test set that we used to optimise the parameters, the best

selections of simplifications to enable is different.

3.19 Evaluation

To build a test set, we took the SMT-LIB QF BV benchmark set as of January 2012.

Then we discarded the asp family of benchmarks which is large (29GB), and con-

tains encodings of problems we are uninterested in, for example: towers of Hanoi,

travelling salesperson, and Sudoku problems. We discarded the mcm family be-

cause it uses the define-fun syntax that STP2 cannot yet parse. We discarded the

bruttomesso-core family because they contain no arithmetic. Next, we limited each

family to 50 randomly chosen benchmarks that at least one of STP2 r1611 or Z3 3.2

[dMB08b], could not solve inside 1 second. We were left with 715 benchmarks in

31 families. Next we ran each problem using a memory limit of 3GB and a timeout

of 500 seconds on a single core of an Intel E5507 Linux computer. This is the test set

and configuration we use in the next chapter’s evaluation, too (section 4.7).

There is a substantial variation in the solving time due to the bruttomesso families

of hardware verification problems, so we report times for those families separately.

Table 3.2 compares STP2 r1654 with Z3 3.2, showing that STP2 is competitive

with Z3. Table 3.3 shows the times for the Bruttomesso families; on these bench-

marks, STP2 is not competitive with Z3. Overall STP2 performs well.

3.20 Relative Significance of Simplifications

Todeterminewhichof the simplificationswehavepresented are themost important,

in this section we compare configurations of STP2 with individual simplifications

disabled and enabled. The intention is to identify which simplifications are the

most important.

In the evaluation, we use three different CNF simplifications. All of the CNF

simplifications we use read and write the DIMACS CNF format, so can easily be

used before SAT solving. The ability to simply use CNF simplification tools is an

advantage of the eager approach. Integrating CNF simplification in the lazy SMT

approach is much more time consuming. SatELite [EB05] converts a CNF into a

simpler CNF by eliminating variables and subsumed clauses. We use the original
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STP2 with TM STP2 r1654 STP2-4Simp Z3 3.2

Family # time fail time fail time fail time fail

VS3 11 1 1/10 120 1/10 393 1/9 610 7

brummayerbiere 28 224 1/12 290 1/12 670 1/11 551 1/13
brummayerbiere2 50 1941 13 1903 1/12 2897 9 2127 1/29
brummayerbiere3 50 1524 24 1505 24 1319 24 1326 1/31
calypto 17 4 15 2 12 597 14 969 11

galois 3 0 3 0 3 0 3 0 3

gulwani-pldi08 3 58 15 27 17
pipe 1 0 1 0 1 0 1 0 1

rubik 6 114 271 152 1 88 1
sage:app1 50 52 238 69 216
sage:app12 14 0 0 0 0

sage:app2 1 0 0 0 9
sage:app7 6 0 0 0 10
sage:app8 50 36 19 43 63
sage:app9 50 38 19 44 60
spear:cvs v1.11.22 28 42 44 50 134
spear:inn v2.4.3 50 81 46 113 294
spear:openldap v2.3.35 5 0 5 11 1 475 2 0 5
spear:samba v3.0.24 50 640 119 334 585
spear:wget v1.10.2 41 101 83 157 485
spear:xinetd v2.3.14 1 1 0 0 3
spear:zebra v0.95a 5 3 4 8 16
stp 1 0 1/1 16 27 9

stp samples 22 2 2 3 2 2 2 1 2

tacas07 3 155 1 256 322 929
uclid contrib smtcomp09 7 648 999 645 1598
uclid:catchconv 50 0 1/50 47 92 137
uum 7 35 6 31 6 17 6 11 6

wienand-cav2008:Booth 5 82 4 78 4 45 4 30 4

Sum 615 5791 147 6132 87 8511 86 10288 113

Time incl. penalty 79438s 49719s 51597s 66901s

Table 3.2: Problems solved by: STP2with all simplifications disabled except for TM,
STP2 default configuration, 4Simp—a simple solver (section 3.22) , and the current
version of SMT-COMP 2012 winner Z3 3.2. ‘#’ is the number of problems in each
family. ‘time’ is the time in seconds for successful instances. ‘fail’ is the number of
failures. 1/19, means 19 failures in total, one of which exceeds the memory limit.
‘Time incl. penalty’ is the sum of the successful times plus 501 seconds penalty for
each failure. The bruttomesso benchmarks are given in Table 3.3.

SatELite implementation, and the implementation of PrecoSAT 570. We also use

blocked clause elimination [JBH10] from Precosat 570.

Table 3.4 gives the number of failures for STP2 configurationswith single simpli-

fications enabled or disabled. Not all of the simplifications that we have discussed
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STP2 with TM STP2 r1654 4Simp Z3 3.2

Family # time fail time fail time fail time fail

bruttomesso:lfsr 50 6861 5 7434 4 1760 1 895

bruttomesso:simple processor 50 3511 4 3576 5 1600 4 1765 3

Sum 100 10372 9 11010 9 3360 5 2661 3

Time incl. penalty 14881s 15519s 5865s 4164s

Table 3.3: Bruttomesso families benchmarks solved by configurations. Headings
are as per Table 3.2.

Z3 3.2 STP2 r1654 4Simp VBS
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Figure 3.9: Number of times the memory limit of 3GB or the time limit of 500s was
exceeded when running 615 SMT-LIB2 problems.

are enabled by default in STP2. The Virtual Best Solver (VBS) gives the number of

problems that no variant could solve. The VBS effectively runs each configuration

in parallel and gives the time when the first configuration solves a problem (if any).

Note that some simplifications solve more problems than the default STP2 configu-

ration, for instance, using AIG rewrites solves four extra problems. Table 3.6 gives

the results just for the Bruttomesso families. Figure 3.9 shows the relative number of

failures on the 615 test problems.

Table 3.4 contains comparisons between three approaches for generating CNF.

The STP2 original CNF encoding, which was inherited from an earlier version of

STP, does not use AIGs; it uses a custom propositional-to-CNF encoding scheme.

It solved 45 fewer problems than the AIG and TM approach. We use the ABC

tool version abc70930. The Tseitin CNF encoding, implemented by the ABC tool,

uses AIGs, and converts via the Tseitin transformation to CNF. TM has the highest
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impact of any simplification. Note though that STP2 has various ways to encode

the basic operations. For example, by selecting different configuration options,

there are about 80 distinct ways to encode multiplication. We have used parameter

optimisation to select good propositional encodings for bit-vector operations with

the TM CNF translator. If parameter optimisation was reapplied with either the

original or the Tseitin CNF transformation, then the difference would probably be

reduced.

With clause count comparison disabled, 10 fewer problems are solved. So, the

speculative transformations have made these 10 problems harder to solve. If the

speculative transformations are disabled, 4 fewer instances are solved. So without

the clause count comparison approach, the speculative transformations are harmful.

Note that disabling the speculative transformations also disables the partial solver,

which relies on the speculative transformations for correctness.

The virtual best solver answers 19more problems than the default configuration.

This demonstrates a challenge in building efficient bit-vector solvers: simplifica-

tions speed up some problems, but slow others down.

Table 3.5 shows the number of problems that were solved by particular con-

figurations, that were not also solved by the default STP2 configuration. It shows

that even though the original CNF encoding solved 45 fewer problems than the

default STP2 configuration (Table 3.4), it solved one problem that the default STP2

configuration could not.

Table 3.5 also shows that disabling clause count comparison solves twoproblems

that the default configuration does not. Disabling clause count comparison does

not solve 12 problems the default configuration does, but solves two problems the

default configuration fails upon. So the changes from speculative transformations

are reverted for two problems, even though they made the problem easier to solve.

Table 3.6 gives the number of failures for different configurations when solving

the Bruttomesso families. Unlike for the other benchmarks, where Glucose 2.0

solved the most problems, for the Bruttomesso families, Glucose 2.0 solves 25 fewer

problems than Minisat 2.2.

Table 3.7 gives the measurements for STP2 with Glucose as a solver, and for

STP2 and AIG rewriting. These configurations correspond to the best two configu-

rations that we considered. Note that for the spear families, enabling AIG rewrites
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# Failures Configuration

132 Using STP original CNF encoding
103 Using ABC Tseitin CNF encoding
97 Disabling clause count comparison (section 3.7)
92 Enabling Precosat’s Blocked clause elimination
91 Disabling speculative transformations and the partial solver
90 Disabling bit-blasting simplifications (section 3.8)
90 Disabling unconstrained simplification (section 3.15)
90 Disabling theory-level bit-propagation (chapter 4)
89 Disabling variable elimination (section 3.4)
89 Disabling creation-time simplifications (section 3.3)
88 Enabling AIG Boolean abstraction rewrite (section 3.13)
88 Disabling the pure literal rule (section 3.16)
88 Disabling the interval simplification (section 3.17)
87 Enabling the ITE simplifications (section 3.14)
87 Disabling the partial solver (section 3.5)
87 STP2 r1654 default configuration
86 Enabling Precosat’s Satelite-style variable elimination
83 Enabling AIG rewriting (section 3.12)
81 Using SatELite CNF preprocessor and Glucose 2.0
68 Virtual Best Solver

Table 3.4: STP2 with simplifications enabled/disabled. The number of failures
amongst 615 test problems excluding the Bruttomesso families is shown for each
configuration. The fewer the failures the better.

# New problems solved

1 Disabling speculative transformations and the partial solver
1 Enabling Precosat’s Blocked clause elimination
1 Enabling AIG Boolean abstraction rewrite (section 3.13)
1 Disabling unconstrained simplification (section 3.15)
1 Using ABC Tseitin CNF encoding
1 Using STP original CNF encoding
1 Disabling the interval simplification (section 3.17)
1 Disabling theory-level bit-propagation (chapter 4)
2 Disabling clause count comparison (section 3.7)
5 Enabling Precosat’s Satelite-style variable elimination
8 Enabling AIG rewriting (section 3.12)

10 Using SatELite CNF preprocessor and Glucose 2.0

Table 3.5: Problems solved by STP2 with specified configuration that were not also
solved by the default STP2 configuration. This excludes the Bruttomesso families.

considerably slows down solving. These instances generally take a few seconds to

solve, so the AIG rewriting is not justified for these. However, the brummayerbiere3

family has far more problems solved with AIG rewriting enabled.
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Failures Configuration

45 Using ABC Tseitin CNF encoding
40 Using STP original CNF encoding
34 Using SatELite CNF preprocessor and Glucose 2.0
22 Enabling Precosat’s Blocked clause elimination
10 Enabling AIG rewriting (section 3.12)
10 Disabling the pure literal rule (section 3.16)
10 Disabling the interval simplification (section 3.17)
10 Disabling theory-level bit-propagation (chapter 4)
10 Disabling the partial solver (section 3.5)
9 Disabling speculative transformations and the partial solver
9 Enabling AIG Boolean abstraction rewrite (section 3.13)
9 Disabling clause count comparison (section 3.7)
9 Disabling unconstrained simplification (section 3.15)
9 Enabling the ITE simplifications (section 3.14)
9 Disabling variable elimination (section 3.4)
9 Disabling creation-time simplifications (section 3.3)
9 STP2 r1654 default configuration
7 Disabling bit-blasting simplifications (section 3.8)
4 Enabling Precosat’s Satelite-style variable elimination
1 Virtual Best Solver

Table 3.6: Number of failures for the 100 Bruttomesso test problems with various
configurations of STP2.

3.21 A Comparison of the Tseitin and TM Encodings

Table 3.4 showed that disabling the TM simplification had the largest improvement

of any simplificationwe investigated. In this section,we compare theCNF encoding

of bit-vector operations via the Tseitin and TM encodings.

For several operations we measure how long unit propagation takes, and how

many assignments are derived by unit propagation for each encoding. We encode

each operation in an equality expression, which allows us measure how much

unit propagation occurs. For instance, to measure the bit-vector exclusive-or’s

propagation, we encode (v[64]
0
= (v[64]

1
bvxor v[64]

2
)) to CNF. We randomly set all of

the bits of (v1, v2) to one or zero with uniform probability, then calculate v0. Next

we delete 50% of the assignments. We apply unit propagation, but not search, to

100,000 such instances. After unit propagation completed, we counted the extra

number of input and output bits that were assigned.

For some operations it is quick to compute the maximally precise (section 2.10)

assignment. We discuss how we implement this in section 4.8. The results are
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STP2 STP2+AIG rewrites STP2 + Glucose

Family # time fail time fail time fail

VS3 11 120 1/10 0 1/11 186 1/9

brummayerbiere 28 290 1/12 293 1/12 380 1/11

brummayerbiere2 50 1903 12 2113 3/12 1670 11

brummayerbiere3 50 1505 24 1007 1/17 1569 23
calypto 17 2 12 441 11 855 9

galois 3 0 3 0 3 0 3

gulwani-pldi08 3 15 18 6

pipe 1 0 1 0 1 0 1

rubik 6 271 92 64

sage:app1 50 238 400 247
sage:app12 14 0 0 0

sage:app2 1 0 0 0

sage:app7 6 0 1 0

sage:app8 50 19 48 22
sage:app9 50 19 51 22
spear:cvs v1.11.22 28 44 131 32

spear:inn v2.4.3 50 46 659 91
spear:openldap v2.3.35 5 11 1 119 3 1394 2
spear:samba v3.0.24 50 119 578 297
spear:wget v1.10.2 41 83 598 320
spear:xinetd v2.3.14 1 0 0 0
spear:zebra v0.95a 5 4 28 6
stp 1 16 25 84
stp samples 22 3 2 4 2 3 2

tacas07 3 256 312 150

uclid contrib smtcomp09 7 999 455 1 447

uclid:catchconv 50 47 132 114
uum 7 31 6 31 6 9 6

wienand-cav2008:Booth 5 78 4 90 4 21 4

Sum 615 6132 87 7639 83 8002 81

Time incl. penalty 49719s 49222s 48583s

Table 3.7: Problems solved by various configurations. Columns are as per Table 3.2.

shown in Table 3.8. A higher percentage means more of the possible information

was determined. The percentage given for the arithmetic shift is deceptively high

because shifting random assignments is easy (we discuss this in section 4.10). The

Plaisted andGreenbaum translation [PG86] is amoremodern encoding, so it would

make a better comparison for TM than comparing it to the Tseitin transformation.

However, when measuring the SAT solving time of SMT-LIB bit-vector problems

Jarvisalo et al. [JBH11] found only a small difference using each translation.
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TM Encoding Tseitin Encoding

operation clauses time extra % clauses time extra %

signed ≥ 693 0.95 17296 79 1340 1.87 15932 73
unsigned less than 681 0.97 17337 80 1325 1.90 15903 73
equal 310 0.43 49994 100 767 0.82 49826 100
bit-vector xor 384 0.98 2398227 100 704 1.45 2400319 100
bit-vector or 320 0.87 2799457 100 320 0.91 2797177 100
bit-vector and 320 0.75 2800824 100 320 0.70 2799984 100
arithmetic shift 2114 1.44 3249159 100 4289 2.85 3249174 100
addition 1011 1.78 1136975 67 2204 3.28 1138400 67
subtraction 1011 1.76 1139723 67 2204 2.92 1140825 67
multiplication 34350 20.45 148453 – 71504 81.64 148273 –
unsigned division 63738 117.99 3038078 – 166091 447.68 3038667 –
unsigned remainder 64074 124.02 757930 – 167429 456.71 719392 –
signed division 65624 62.05 1163098 – 170048 248.40 1065681 –
signed remainder 65761 61.96 211400 – 171377 232.60 164152 –

Table 3.8: A comparison of operations encoded via ABC’s Tseitin and TM transfor-
mation. 100,000 iterations on a single core of an Intel Q8400 Linux computer were
run. 50% of variables have a known assignment initially. ‘clauses’ is how many
clauses the encoding contains (including an extra equality). ‘time’ is the sum of the
time in seconds to perform unit propagations. ‘extra’ is the total number of extra
assignment unit propagation determined. ‘%’ is the percentage of the maximum
possible number of assignments that were discovered. That is, the percentage of
assignments discovered versus the maximally precise propagator. The % is not
shown for some operators for which it is too expensive to calculate the maximally
precise result.

In this section we do not measure the percentage of unsatisfiable assignments

that are detected via unit propagation. This is another useful measure of an encod-

ing’s propagation strength.

The results show why the TM encoding is better than the Tseitin encoding. The

TM encoding of the operations never has more clauses than the Tseitin encoding.

Applying unit propagation to the TM encoding is sometimes much faster. For

instance, unit propagation on the multiplication TM encoding is four times faster

than applying it to the Tseitin encoding. The result of applying unit propagation

to the TM encoding does not assign fewer variables. The TM encoding has fewer

clauses, unit propagation completes faster on it, and more variables’ assignments

are deduced for the comparison operations.
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3.22 A Simple Fast Solver (4Simp)

We have already turned off single simplifications and measured the effect of this

(section 3.20). In this section, we complement the prior sections by measuring

STP2 with just a few simplifications enabled. We answer the question: “Which

simplifications make a simple, fast bit-vector solver?”. We show just that a few

simplifications are the most important.

We start with STP2 r1654 with all simplifications disabled. Based on the prior

results, TMwas the singlemost important simplification, sowe enable just that. The

workflow of STP2 in this configuration is simple. Problems are parsed, structurally

hashed, bit-blasted to AIGs, then encoded via TM to CNF. The results are shown in

Table 3.2; with this configuration 147 benchmarks failed.

By trial and error we determined that turning on variable elimination and

creation-time simplifications solved many of the uclid:catchconv family—all 50 of

which failed with just TM enabled. Because it is easy to run the SatELite-style

simplification, and the prior sections showed it helped, we enabled that too. We

call this solver 4Simp; it is STP2 with only creation-time simplifications, variable

elimination, Precosat’s SatELite-style simplification, and TM. It solves one more

problem than the default STP2 configuration, and 27 more than Z3 3.2. Enabling

some other simplifications gives even better performance, but our intention is to

show that a few simplifications are enough to build a competitive bit-vector solver.

Of course, on different tests, different simplifications might help.

STP2 performsworse than 4Simp on the problemswe have evaluatedwith. This

is because STP2 has been tuned to solve problems from a different test set—those

provided over time by users of STP. For the problems we evaluated with in this

section, the 4Simp solver is better choice of simplifications.

We compared 4Simp using the variable elimination algorithm that we described

in section 3.4 versus 4Simp with a simpler variable elimination algorithm which

only eliminates variables which are asserted to equal terms at the top level. For

the SMT-COMP 2012 QF BV division problems, the simpler variable elimination

algorithm solved 189 problem, while the algorithm we describe solved 188.
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3.23 Related Work

Bit-vector solvers have a rich history inspired initially by problems from electronics

design automation. At SMT-COMP 2011, in the QF BV division, the five top placed

solvers were bit-blasting based solvers. Eager SAT based approaches are currently

dominant at solving bit-vector problems derived from software. In this section, we

focus mostly on differences between eager bit-vector solvers. In subsection 3.23.7,

we discuss alternative approaches.

Tracy Larrabee [Lar90] bit-blasted circuits and used a SAT solver to discover

test cases for hardware circuits. However, BDDs, popularised by Bryant [Bry86],

dominated hardware verification problems until Biere et al. [BCCZ99] showedgood

results with a SAT approach.

Many variants of BDDswere tried, like *BMD() [Ard96]which have linear rather

than BDDs’ exponential memory growth as the bit-width of multiplication grows.

The size of BDDs, and so the memory used, depends on its variable ordering, if a

good variable ordering can be found, then for some problems BDDs are still faster

than SAT [SD11].

Many theorem provers, such as ACL2, have bit-vector libraries [Rus99] to allow

bit-vector reasoning inside the prover. To increase automation (theorem provers

often require human intervention to direct the search for a proof), libraries have

been implemented which can discharge theorems by bit-blasting to SAT [Fox11].

Proofs of unsatisfiability which are generated by some bit-vector solver, for instance

Z3 [dMB08b], but not by STP2, can be automatically checked by the theorem prover

to increase the confidence the result is correct [BFSW11]. Böhme et al. [BFSW11]

compare a bit-blasting algorithm [Fox11] for HOL4 versus that of Z3, and find that

Z3 was substantially faster at solving QF ABV problems.

In another context, Huang [Hua08] has used bit-blasting to solve finite domain

constraint programming problems.

Equivalence checking problems ask whether, for the same inputs, the output

of two circuits can differ. Bit-blasting has been used in part to solve equivalence

checking problems in hardware [KJJP09], and software [Smi11].

Little work has focused on solving problems in the quantified theory of bit-

vectors. John andChakraborty [JC11] perform quantifier elimination before solving
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with STP. Wintersteiger et al. [WHdM10] apply a simplification phase to quantified

problems before instantiating quantifiers.

Fragments of QF BV are decidable in polynomial time. For instance, Cyrluk et

al. [CMR97] give an algorithm for solving problems with bit-vector variables, bit-

vector constants, concatenation, extraction and equality in polynomial time in the

number of equalities.

Our results (section 3.19) showed that the virtual best solver solved 27 more

problems than the default STP2 configuration. Adjusting the solver approach to

fit with particular problems is clearly advantageous. De Moura and Passmore

(unpublished [dMP12]) refer to the “strategy challenge” and advocate giving users

the ability to exert control over the heuristics used to solve problems, that is, giving

informed users the ability to specify the simplifications and solving techniques that

are applied to a particular problem.

Portfolio solving runs different, or differently configured, solvers in parallel to

solve a problem. The approach is successful for SAT solving [XHHLB08]. The

difference between the virtual best solver, and the default configuration of STP2

show that a similar approach might be useful for bit-vector solving.

3.23.1 Spear

Domagoj Babić [Bab08] describes the Spear solver which won the SMT-COMP 2007

QF BV division. Spear is an eager bit-vector solver. It rewrites the input expression,

then encodes to CNF using encodings of operations that are optimised to have the

few logical operations. Spear then simplifies the CNF before SAT solving.

A major novelty of Spear is the automatic parameter tuning of its SAT solver.

We also used the ParamILS tool as described in section 3.18. Automatically tuning

the SAT parameters reduced the average runtime of Spear on some problems from

780 seconds to 1.5 seconds.

Other potentially significant differences to STP2 are: the use of Guild divisor—a

type of division circuit, and the conversion of division by constants into multipli-

cations.

68



3.23. RELATED WORK

3.23.2 MathSAT

Roberto Bruttomesso [Bru08] described a bit-vector solver that is incorporated into

the lazy MathSAT solver. MathSAT calculates the boolean abstraction (introduced

in section 3.13) of bit-vector problems, and then uses a layered approach to solving.

Each potentially spurious model is checked by an equality with uninterpreted

functions solver before bit-vector solving occurs.

MathSAT uses an uninterpreted function solver to look for obviously inconsis-

tent sets of assignments. For example, ((1 × 2) = 4) ∧ ((1 × 2) = 3) is inconsistent

because of functional congruence, irrespective of the interpretation of the multipli-

cation operation.

Bruttomesso gives rules for the unconstrained simplification (section 3.15) that

we followed with STP2.

3.23.3 UCLID

UCLID as described in Bryant et al. [BKO+07] uses under- and over-approximation

of bit-vector problems. The problem is first under-approximated (i.e. replaced by

one that entails it) and solved, and if the under-approximation is satisfiable, the

procedure has completed. If it is unsatisfiable, the unsatisfiable core is examined

and used to produce an over-approximation of the input.

To produce the under-approximation, the topmost bits of variables are con-

strained to all be equal. For instance, given a variable 〈v[3], v[2], v[1], v[0]〉, v[3]

through v[1] might be constrained to all have the same value. Each time an under-

approximation is produced, the number of top-most bits thus constrained is re-

duced.

The over-approximation is produced by replacing each Boolean node with a

fresh unconstrained variable, whenever the node does not appear in the under-

approximation’s unsatisfiable core.

During its abstraction phase, UCLID replaces hard operations with partial im-

plementations. For instance, the multiplication of more than 4 bits is replaced by

the partial implementation: ite(x = 0 ∨ y = 0, 0, ite(x = 1, y, ite(y = 1, x,mul(x, y)))),

where mul is a uninterpreted function symbol.
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3.23.4 Boolector

Robert Brummayer [Bru09] describes the open-source Boolector eager bit-vector

and array solver.

Brummayer and Biere [BB09] describe an under-approximation technique to

speed up solving unsatisfiable formulae. This is a more sophisticated implemen-

tation of the idea of Bryant et al. [BKO+07]. Extra constraints are encoded with

the problem so that it is over-constrained. The bottom n bits of a bit-vector have

no additional constraints, while the topmost m bits are constrained. The original

formula is translated to CNF, with extra constraints.

For instance, to constrain the topmost two bits of t[8] to the sign extension, a new

variable e is added to the CNF. Then the additional clauses (e→ (t[7] = t[5]))∧ (e→

(v[6] = v[5]))) are asserted to the SAT solver, and e is assumed. If the SAT solver

reports that the problem is satisfiable, then the process is finished. However, if

it is unsatisfiable, the actual models might have been erroneously removed, so it

is necessary to assert ¬e. Assumptions allow constraints to be removed from the

SAT solver while keeping some of the learnt conflict clauses. To avoid too many

refinement loops, the effective bit-width n is usually doubled with each refinement.

If the SAT solver yields “unsatisfiable”, and none of the assumptions were used to

derive the contradiction, then it is no longer necessary to search.

3.23.5 Z3

The Z3 solver [dMB11], which recently had its source code published, is the most

widelyused and capable SMTsolver. Z3 supports the combinationofmanydifferent

theories, as well as features that STP2 does not implement, such as producing

reasons for unsatisfiability and interpolants. There is limited published information

about Z3’s bit-vector implementation. In a mailing list, de Moura [dM11] describes

that QF BV solving in Z3 version 3 is based on preprocessing, then bit-blasting.

3.23.6 Beaver

Beaver [LS10] is an eager QF BV solver. It performs rewrites followed by conversions

to AIGs then via the ABC tool’s TM to CNF. Beaver pre-computes AIG templates

for expensive operations (multiplication, addition, division and remainder). When
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these operations are bit-blasted to AIGs, these pre-simplified templates are instan-

tiated. For instance, at design-time multiplication is encoded from Verilog into an

AIG, then the ABC package’s AIG optimisations are used to simplify the encoding.

Performing this simplification at runtime would be too expensive. The technical

report [LS10] compares the solving time using these optimised versus unoptimised

templates, showing that the optimised templates are helpful. The optimised tem-

plates have two advantages: first, bit-blasting time is lowered because the templates

are cheap to instantiate. Second, the templates can be carefully optimised off-line.

We have not measured if this is also useful for STP2.

Another novelty of Beaver is that it replaces modulus, remainder and division

operations bymultiplication. Excluding consideration of division by zero, (a÷u b) is

replaced by q, with the additional constraint a = qb+ r∧ r < b, constrained at the top

level. The addition and multiplication that are introduced are specially constrained

to avoid overflow. The authors justify the rewriting of division, modulus and re-

mainder to multiplication as being useful because division generates larger circuits

as compared to multiplication. In Table 3.8, we showed that the multiplication op-

eration’s encoding has about half the number of clauses compared to division. We

experimented with converting unsigned division to multiplication, but did not get

a speedup.

When solving SMT-LIB problems, of the SAT solvers Limaye and Seshia exper-

imented with, they found the non-clausal SAT Solver NFLSAT [JC09], which can

read AIG input, the fastest.

Jha et al. [JLS09] also compare the ABC tool’s implementation of TM versus

the Tseitin encoding. The scatter plots they give show that TM is faster, but they

do not quantify the difference. They found TM to significantly speed up the spear

families. STP2 r1654 with TM solves 180 spear problems in 460 seconds, whereas

with Tseitin it takes 310 seconds. We saw the largest difference in the Bruttomesso

families, where the use of TM led to solving 36 more problems.

3.23.7 Other Approaches

We now discuss a few approaches other than the eager encoding to solve bit-vector

problems.
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Lazy SMT. The traditional SMT approach is the lazy approach [Seb07]. It follows

the ideas of theNelson-Oppen combination method, and abstracts the problem into

aBoolean abstraction, onwhich the SATsolverproduces candidate assignments that

theory solvers check for consistency. The lazy SMT approach is good for combining

theories, and for dealing with problems that have a large or infinite eager CNF

encoding.

Integer Linear Programming. Zeng et al. [ZKC01] converts bit-vector problems to

integer linear problems.

Example 3.26

To linearise the logical and operation, where (a = (b∧c)), Zeng et al. [ZKC01] encode

using integer variables that are either 0 or 1, and then assert: ai ≤ bi, ai ≤ ci, and

ai ≥ bi + ci − 1. �

Achterberg [Ach07] linearises bit-vector problems and solves them using a stan-

dard linear solver. He does not linearise all bit-vector operations, reporting that

linearisation of the shift-left constraint on a 64-bit input requires 30944 inequali-

ties, and 20929 new variables; too many to be practical. Bruttomesso [Bru08] also

investigated linearisation for solving bit-vector problems.

Propagators. Bardin et al. [BHP10] built propagators for twodomains for each bit-

vector operation. One domain is for constant bits, the same domain we investigate

in chapter 4. The other is sets of unsigned intervals. Information is kept updated

between the two domains. Using a worklist, all the propagators are run until a

fixed point is reached, and then search occurs. An advantage of their approach

is that the encoding size does not increase quadratically with the bit-width of the

expressions. Their solver slows down a little bit as the size of problems is changed

from 64 to 512 bits, but less drastically than the bit-blasting solvers slow down.

Their propagators are not able to explain, in the sense of lazy clause generation

[OSC09], why a conflict occurred. So, unlike SAT based approaches, there is no

conflict driven clause learning to prune the search space.
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3.23.8 Bit-Width Reduction

Bit-width reduction produces an equisatisfiable problem where the expressions

have fewer bits.

These reductions can be performed in the presence of bitwise operations like

“and”, “or”, and exclusive-or which operate uniformly on all the bits. That is,

each bit i of the output is a function just of the bit i’s of the inputs. Care needs to

be taken to ensure that the reduced bit-width is large enough to allow equations

to be transitively equals / not equals. Johannsen and Drechsler [JD01] reduce the

encoding of a hardware verification problem by 70% by applying the simplification

upfront. This is similar to the decision procedure of Cyrluk et al. [CMR97].

Example 3.27

Consider the expression (y[32][15, 0] = y[32][31, 16]), where these are the only occur-

rences of y. An equisatisfiable expression with a fresh 2-bit variable is: (v[2][1, 1] =

v[2][0, 0]). To convert amodel of v[2] into amodel of y[32], let y[32] = (0[15] :: (y[2][0, 0] ::

(0[15] :: y[2][1 : 1]))). �

We do not implement this simplification because the arithmetic operations com-

monly contained in software verification problems, such as addition and multipli-

cation, do not operate uniformly on the bit-vector operands.

3.23.9 Peephole Optimisation

A peephole optimiser is a rewrite system in a compiler that replaces sequences of

instructions with other equivalent, but better sequences of instructions. It is called

a peephole optimisation because the replacement is made locally, while looking at

a small piece of the program.

Sorav Bansal [Ban08] automatically derives peephole rules. The idea is to enu-

merate instruction sequences, then run those sequences on a few inputs. The result

of the instructions is used to build a hash value, and the instruction sequence is

stored in a hash table. When two instruction sequences with the same fingerprint

are found, both sequences are run on extra inputs. If the output of each sequence

is the same, then the sequences are encoded to SAT and checked for equivalence.
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If they are equivalent, then a rewrite rule is produced which replaces the infe-

rior sequence with the better one. We applied a similar idea when we generated

equivalences (subsection 3.11.1).

The principal differences between finding rewrite rules for peephole and bit-

vectors are: the rules for bit-vectors should apply to all bit-widths; bit-vectors have

a single output whereas machine instructions change processor flags, registers and

memory; and instructions have irrelevant instructions intermixed, that is, the data

dependency is not clear.

3.24 Conclusion

Research into QF BV solvers aims to produce correct and faster solvers. We have

described the architecture and simplifications that we developed tomake STP2 and

4Simp, competitive modern bit-vector solvers.

This chapter contains descriptions of some novel approaches. In particular:

• The variable elimination algorithm (section 3.4), is a principled approach to

isolating variables.

• The bit-blasting equivalence checking (section 3.8), transfers information de-

rived by the AIGs back to the bit-vector theory-level.

• The approach to discovering equivalences (subsection 3.11.1), gives a way for

authors of bit-vector solvers to discover equivalences that might be useful.

We showedhow to automatically generate bit-vector equivalences by comparing

bit-vector terms on a range of bit-widths. We found it most useful to use the

equivalences that were discovered to check whether there were extra rules that we

could include into STP2 and 4Simp. We found that too few of the rules matched

larger instances, making it impractical to apply them.

Wehave explored the effect of simplifications on solving bit-vector problems. Of

the simplificationswediscussed,on the benchmarkswe examined, theTMapproach

([EMS07]) made the most dramatic improvement. We showed that applying it,

along with creation-time simplifications, variable elimination, and SatELite pre-

processing was enough to achieve a simple and competitive bit-vector solver.

In the next chapter we examine another transformation.
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4
Theory-Level Bit Propagation

4.1 Introduction

I
N this chapter we investigate whether it is useful for STP2 to have a simplifi-

cation phase which calculates, at the theory-level, which bits must be true or

false. STP2 was described in chapter 3.

We consider the case where argument or result values are partially known, that

is, some bit values are known. Reasoning at this level has the potential to expose

bit relationships that will be much harder to identify after the high level structure

has been “lost in translation”, that is, after a problem has been encoded in CNF.

Our aim here is to explore whether the approach scales well enough to be useful

for larger realistic examples.

It is important to understand that bit propagation, as we use the term, deals

with multi-way information flow. In compiler theory, “constant propagation” is

a “forwards” analysis, in which values of expressions may be deduced from the

values of sub-expressions, and bit-vector solvers often incorporate this. With bit

propagation we aim not only to deduce bit values of composite expressions from

their sub-expressions’ known bit values, but also, simultaneously, to deduce bit

values of the sub-expressions fromwhat is known about the composite expression’s

bit values.

Intuitively, for multiplication and allied operations, the relationships amongst

result and argument bits are highly complex. However, for the most and least

significant bit positions, important relationships can be extracted with relatively
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little effort, and this is often sufficient to enable constraint simplificationor improved

implicativity of generated clauses.

Our idea is as follows. Before encoding into CNF (as presented to a SAT solver),

we apply inexpensive propagators that deduce some of the bit values that the

input, output and intermediate values must take for the generated clauses to be

satisfiable. We use the information that these propagators establish to simplify

expressions before encoding, that is, to replace sub-expressions and variables with

known values.

We aim to simplify problems expressed in the QF BV language, a quantifier free

theory of fixed-width bit-vectors. Let us briefly recall (from section 2.3): We use t[n]

to represent a bit-vector expression t of bit-width n, where n > 0. We use square

brackets for the extract operation, which extracts a single bit or a sequence of bits.

t[0] is the least significant (or rightmost) bit. Unsigned arithmetic operations in-

terpret the bit-vector as the integer
∑n−1

i=0 2i × t[i]. We indicate bit-vector constants

as strings of 0s and 1s. For example, the unsigned integer corresponding to (110)2

is 6. Multiplication and addition are performed modulo 2n, so the result may

overflow—which significantly complicates the analysis. Unsigned division per-

forms truncating integer division, which never overflows. Signed remainder gives

the remainder of signeddivisionwith rounding toward zero. Signedmodulus gives

the remainder of signed division with rounding toward negative infinity.

For each of the operations in the QF BV language, we have built propagators that

deduce bits’ values from operations’ inputs and output. We use these deduced bit

values to simplify the problem before it is encoded to CNF, while the problem is

still at the theory-level. This can identify some simplifications that are harder to

find in a CNF encoding.

Another advantage of implementing propagators rather than bit-blasting to

CNF is that propagators use less memory per operation. The CNF encoding of

some operations, like signed division, is large. For instance, STP2 encodes a 64-bit

signeddivision as about 65,000 clauses (Table 3.8); for each suchoperationSTP2uses

20MB of memory, greatly limiting the number of operations that STP2 can handle.

A 32-bit signed division is encoded as 17,500 clauses, and 128-bit signed division

encoded as 262,000 clauses. The number of clauses and the memory used grows
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10

⋆

Figure 4.1: The ternary domain (3)

∧ 0 1 ⋆

0 0 0 0
1 0 1 ⋆
⋆ 0 ⋆ ⋆

∨ 0 1 ⋆

0 0 1 ⋆
1 1 1 1
⋆ ⋆ 1 ⋆

⊕ 0 1 ⋆

0 0 1 ⋆
1 1 0 ⋆
⋆ ⋆ ⋆ ⋆

¬

0 1
1 0
⋆ ⋆

Figure 4.2: Truth tables in a three valued logic for and, or, xor, and negation, as given
by Kleene’s strong three-valued logic K3

roughly quadratically with the bit-width. The memory use of the propagators we

describe in this chapter grows more slowly.

To reason about the values that separate bits may take, it is useful to introduce

three-valued logic. Let 2 = {0, 1} be the set of classical truth values. Figure 4.1 shows

a Hasse diagram for the set of ternary truth values 3 = {0, 1, ⋆}. As can be seen, the

ordering ≤ of these values is defined by v ≤ v′ iff (v = v′) ∨ (v′ = ⋆). That is, ≤ is an

ordering on information content: 0 and 1 are incomparable, but equally informative

elements, whereas ⋆ represents absence of information. We can give the semantics

of elements of 3 with a function γ :: 3 → P(2) specifying the set of truth values

each element of 3 corresponds to: γ(0) = {0}, γ(1) = {1}, γ(⋆) = {0, 1}. Propositional

logic’s strongest monotone extension to 3 is known as Kleene’s (strong) 3-valued

logic and is used extensively in the fields of program transformation andverification

to reason about partial functions. Truth tables for Kleene’s logic, often denoted K3,

are given in Figure 4.2.

In the next section we define (ternary) truth assignments, but for now we take

the liberty of using ternary bit vectors with the “obvious” meaning. For example,

we use 〈00 ⋆ 1〉 to denote a set of (classical) bit-vectors of length 4, containing two

vectors {(0001)2, (0011)2}.

The input to our analysis is a formula, a well typed QF BV expression of propo-

sitional type. The satisfiability problem is to find assignments to the variables

that make the expression true. If there are no possible assignments, the formula

is unsatisfiable, or equivalent to false. Before analysis, syntactically identical sub-

expressions are shared (structurally hashed), giving a rooted DAG, with a propo-

sitional root node. When we perform an analysis using 3, we calculate the sets of
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possible values at every node. We consider the value of the expression to come out

the top (the root), and variables and constants to be the leaves at the bottom.

We assume the presence of a map M which aids bit-blasting. M maps QF BV

syntactic expressions to tuples of variables (ranging over 3). Mmaps a propositional

expression to a single variable, and a bit-vector expression of bit-width n to a

vector of n variables. A 3-valued assignment µ maps variables to elements of 3.

Propagation works by updating this assignment µ.

In our analysis we begin by associating the output of each QF BV node in the

input expressionwith a vector of fresh variables, then set each variable to⋆. Logical

operations are associated with a vector of size one, bit-vector operations with fresh

vectors of the appropriate width (see example below).

Because equalities are constraints, they may evaluate to 1 or 0. When it is not

clear from context we indicate that an equality must be true with a superscript =t,

similarly when it must be false as = f .

Occasionally we shall silently assume the presence of M and µ. For example,

for brevity we may write 〈10〉 + 〈01〉 =t 〈⋆⋆〉 for the the equation t[2]
0
+ t[2]

1
= t[2]

2
, in

the context ofM and µ defined as

M[t0] = 〈o0, o1〉

M[t1] = 〈o2, o3〉

M[t0 + t1] = 〈o4, o5〉

M[t2] = 〈o6, o7〉

M[t0 + t1 = t2] = 〈o8〉

µ = {o0 7→ 1, o1 7→ 0, o2 7→ 0, o3 7→ 1, o4 7→ 1, o5 7→ 1, o6 7→ ⋆, o7 7→ ⋆, o8 7→ 1}

As an example of performing bit propagation, consider the expression ((b0 ∨ b1) ∧

(v[3]
0
<u (4[3] × v[3]

1
))).

We first create a partial assignment of each node to an appropriately sized fresh

vector 〈oi, . . . , o j〉 of variables. We map constants directly to vectors of 1 or 0 in 3:

M((b0 ∨ b1) ∧ (v[3]
0
<u (4[3] × v[3]

1
))) = 〈o0〉

M(b0 ∨ b1) =〈o1〉

M(v[3]
0
<u (4[3] × v[3]

1
)) = 〈o2〉
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M(4[3] × v[3]
1
) = 〈o5, o4, o3〉

M(b1) = 〈o9〉

M(b0) = 〈o10〉

M(4[3]) = 〈100〉

M(v[3]
1
) = 〈o11, o12, o13〉

M(v[3]
0
) = 〈o14, o15, o16〉

Next we propagate bits in any expressions that have operands or results that are

known bits.

• ((4[3] × v[3]
1
)) ≡ 〈o5, o4, o3〉 sets o3 ← 0 and o4 ← 0.

Then, the value of the expression o0 is set to 1 (true) in the partial assignment:

o0 ← 1. Next propagators are applied until a global fixed point is reached:

• o1 ∧ o2 ≡ o0, where o0 = 1, sets o1 ← 1 and o2 ← 1.

• (M(v[3]
0
) < 〈o5, 0, 0〉) ≡ 〈1〉 sets o14 ← 0 and o5 ← 1.

• ((M(4[3]) ×M(v[3]
1
))) ≡ 〈1, 0, 0〉 sets o13 ← 1.

Note that constraint propagation has deduced the value for one bit in each of v[3]
0

and v[3]
1
, as well as some intermediate values. We can now conjoin these values

with the CNF clauses that are sent to the SAT solver. The analysis we perform is not

complete, but that is of little concern, since the SAT solver provides completeness.

Constant propagation is commonly implemented in bit-vector SMT solvers

[LS10, BH08] and it has been studied in other contexts (see section 4.11). STP2,

used in our evaluation later, performs constant propagation. There are cases where

theory-level bit propagation, as introduced in this chapter, can surpass ordinary

constant propagation. For example, bit propagation can determine that the formula

(1[1] :: x[3]) = (0[1] :: y[3]) where “(::)” is concatenation, must evaluate to 0, something

constant value propagation cannot.

79



CHAPTER 4. THEORY-LEVEL BIT PROPAGATION

4.2 Preliminaries

We now introduce the set of partial truth assignments as an ordered structure, related

to sets of classical truth assignments. Let A2 = Var → 2 be the set of 2-valued

(classical) truth assignments and let A3 = (Var → 3) ∪ {⊥} be the set of 3-valued

truth assignments, extended with a special element ⊥. The ordering ≤ on A3 is

defined as follows: µ ≤ µ′ iff µ = ⊥ ∨ µ(v) ≤ µ′(v) for all v ∈ Var.

We also define the set of concrete (2-valued) and abstract (3-valued) bit vectors,

parameterised by bit-width, as

V
[n]
2
= 2n

V
[n]
3
= 3n

where 2n and 3n denote the sets of n-tuples of elements of 2 and 3, respectively. We

lift our semantic function for 3 to γ ::V[n]
3
→P(V[n]

2
) in the obvious way:

γ((x1, . . . xn)2) = γ(x1) × · · · × γ(xn)

For example, γ((⋆0⋆1)2) = {0, 1}×{0}×{0, 1}×{1} = {(0001)2, (0011)2, (1001)2, (1011)2}.

We need to reason about relations over bit vectors (we are mostly interested

in arithmetic functions, but since our propagators can also propagate information

from outputs to inputs, it is most convenient to view n-ary functions as (n + 1)-ary

relations). An n-ary relation on m-bit vectors is a set of n-tuples of m-bit vectors

listing the valid combinations of inputs and outputs. For example, 1-bit addition

(as well as exclusive or) is captured by the relation

{〈(0)2, (0)2, (0)2〉, 〈(0)2, (1)2, (1)2〉, 〈(1)2, (0)2, (1)2〉, 〈(1)2, (1)2, (0)2〉}

Thus it is convenient to define the sets of concrete and abstract n-tuples of m-bit

vectors, ordered component-wise:

T
[m]〈n〉
2

= (V[m]
2

)n

T
[m]〈n〉
3

= ⊥ ∪ (V[m]
3

)n
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Then a concrete relation is a set of tuples:

R
[m]〈n〉
2

=P(T [m]〈n〉
2

)

Note that we introduce a bottom element ⊥ to our set of abstract values to serve as

the abstraction for an empty set of concrete tuples. Also note thatV[m]
3

(and hence

(V[m]
3

)n) is a join-semilattice, which suffices to give T [m]〈n〉
3

the structure of a lattice.

We define the semantics of an abstract tuple by lifting the γ function to tuples

much as we lifted it to bit vectors. We also define an abstraction function α to give

the best abstraction for a set of concrete tuples.

γ :: T [m]〈n〉
3

→P(T [m]〈n〉
2

)

α :: P(T [m]〈n〉
2

)→ T [m]〈n〉
3

γ(t) =























∅ if t = ⊥

γ(x1) × · · · × γ(xn) if t = 〈x1, . . . xn〉

α(S) =
⊔

S

Here
⊔

is the least upper bound operator on T [m]〈n〉
3

. Note that 2 ⊆ 3, so if

〈x1, . . . , xn〉 ∈ T
[m]〈n〉
2

then 〈x1, . . . , xn〉 ∈ T
[m]〈n〉
3

.

A propagator uses what we know about the behaviour of a function to derive

extra information about the function’s inputs and outputs from the information

supplied. The input to a propagator is a single tuple of abstract values, and the

output is the same as the input tuple, but perhaps strengthened. Thus a propagator

for an (n − 1)-ary function on m-bit integers has type

P
[m]〈n〉
3

= T
[m]〈n〉
3

→ T
[m]〈n〉
3

and is orderedpoint-wise. Note that a propagator can only ever strengthen its input,

so it must be reductive (section 2.10). It also makes no sense for a propagator ever

to produce a weaker output from a stronger input, so it is required to be monotone.

Given a concrete relation R, we can define the optimal propagator PR formally,

like so:

PR(t) = α(R ∩ γ(t))
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Informally, this says that PR is maximally precise. A propagator p for an n-ary

relation R is sound iff PR ≤ p.

All the propagators that we build are sound. Apart from the cases of division,

remainder and multiplication, we have not found instances where they are not

optimal, although we have not proved optimality formally, for most operations.

An efficient optimal propagator for multiplication would solve cryptographically

important factorisationproblems, so the likelihood of discovering such apropagator

is low. In section 4.8 we describe how we have tested our propagators.

We have implemented propagation for all QF BV operations; in this chapter we

focus on the more interesting propagators, namely those for bit-wise and, addition,

multiplication, and unsigned division.

The propagators we implement allow the result of an expression to partially

determine the inputs. Consider ((t[2]
0

bvand t[2]
1
) =t t[2]

2
), where µ = {t0 = 〈⋆⋆〉,

t1 = 〈⋆0〉, t2 = 〈1⋆〉}. Our propagators use the inputs and outputs to refine the

other values, giving additional information about inputs t0 and t1: µ = {t0 = 〈1⋆〉,

t1 = 〈10〉, t2 = 〈10〉}.

As an example of a propagator consider the equality operation. When propa-

gating from operands to result, the rule is: if both operands’ bits are known and

pairwise the same, the result is true. If any of the bits are different, the result is

false. When propagating from the result to operands, there are two new rules: (1)

If the result is fixed to 1, then any fixed bits of one operand should be the same as

the corresponding bits of the other. (2) If the result is fixed to 0, and there is a single

⋆ value, and all the other bits are fixed to the same values, then that ⋆ value should

be fixed to the negation of the value in the same position of the other operand; for

example, given (〈0 ⋆ 0〉= f 〈000〉), the ⋆ value should be fixed to 1.

If apropagatordiscovers an inconsistent assignment, itwill set thepartial assign-

ment to empty (µ =⊥) which halts propagation. For instance, the partial assignment

will be set to ⊥ when processing the sub-expression: 〈0〉 + 〈1〉=t〈0〉, which means

that the entire expression, not just that sub-expression, is unsatisfiable.

For convenience, in the rest of this chapter we use a shorter notation for the

extract operation, using xi to mean x[i].

Later we will discuss in detail propagators for the addition and multiplication

operations. However, we start by describing in detail the bit-vector and propagator.
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initial relations result

0 ∧ ⋆ = ⋆ 0 ∧ 1 = 0, 0 ∧ 0 = 0 0 ∧ ⋆ = 0
1 ∧ 1 = ⋆ 1 ∧ 1 = 1 1 ∧ 1 = 1
0 ∧ 1 = ⋆ 0 ∧ 1 = 0 0 ∧ 1 = 0
0 ∧ 0 = ⋆ 0 ∧ 0 = 0 0 ∧ 0 = 0
⋆ ∧ ⋆ = 1 1 ∧ 1 = 1 1 ∧ 1 = 1
1 ∧ ⋆ = 1 1 ∧ 1 = 1 1 ∧ 1 = 1
0 ∧ ⋆ = 1 {} ⊥

0 ∧ 1 = 1 {} ⊥

0 ∧ 0 = 1 {} ⊥

1 ∧ ⋆ = 0 1 ∧ 0 = 0 1 ∧ 0 = 0
1 ∧ 1 = 0 {} ⊥

Table 4.1: Given the input on the left hand side, the result is the rightmost col-
umn. We give only the rules that cause a change. Only some of the 27 possible
permutations are shown.

4.3 A “Bit-Vector And” Propagator

In this section we take the simple “bit-vector and” (bvand) operation and define

its propagator formally. Later in the chapter we focus on more difficult operations

which we present less formally.

A bvand of bit-width n takes the logical ‘and’ of two n-bit operands giving a

result. It takes two operands (v[n]
0
, v[n]

1
) and gives one result (v[n]

2
). Let D be a

mapping from each variables’ bits to a 3 value.

The bvand operation is a bit-wise operation, the value at position k of some

bit-vector, depends only on the values at k of the other bit-vectors. So it’s enough

to show the properties for just a single bit.

The operation is commutative, so we give only some permutations in Table 4.1.

The ‘initial’ column contains the initial assignments to variables, the relations col-

umn gives the valid assignments that when joined produce the ‘result’.

The initial state summarises a set of relations. We show some of the relations

that are summarised in the “relations” column. Taking the least upper join of the

relations gives the result. For every ⋆ value in the result, there exists at least two

relations in the set, where those relations have a 1 and 0 in the same position as the

⋆.
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4.4 Some Useful Propagators

For convenience, we implement the right shift propagator by reversing the first

operand and the result, then using left shift propagator, then reversing the first

operand and the result again. This requires a simple optimal reverse propagator.

This reverse propagator swaps each bit at position i with the bit at position n − i,

where n is the bit-width. Because of the extra reversing steps involved, our right

shift propagator runs slightly slower than our left shift propagator.

If operands to a propagator are the same, then extra information may be deter-

mined. Consider the expression (t + t). A propagator that recognises that the two

operands are the same can determine that the result must be even. Our propagators

do not consider such aliasing. However, in most cases, instances that would ben-

efit from aliasing have already been removed during normalisation, for example,

replacing (t + t) by (2 × t).

4.4.1 An Addition Propagator

Our addition propagator performs an interval analysis to estimate (the minimum

and maximum of) the addends that may be 1, for each column. One of our multi-

plication propagators (presented in section 4.4.2) also uses this same approach. We

use intervals because they allow simple reasoning about the full adder’s majority

and parity functions.

Let xi, yi, and ci be the single bit addends of column i. The c variables are created

by the addition propagator, and are not used outside it. We call ci the carry-in to the

column and ci+1 the carry-out. c0 is set to 〈0〉 whereas cn, where n is the bit-width,

is ignored. The result bit is ri = xi ⊕ yi ⊕ ci. The carry-out is the majority function:

ci+1 = (xi ∧ ci) ∨ (yi ∧ ci) ∨ (xi ∧ yi).

The details of the operation are shown in Algorithm 4.1. For each column we

calculate a lower bound l and an upper bound u of the number of elements of

{x, y, cin} which may possibly be 1. The propagator works one column at a time,

generally moving from less significant bits towardsmore significant bits. However,

if some carry-in is updated in the process, then propagationmoves back to the prior

column (if it exists).
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Wedonot have a formal proof that the addition propagator ismaximally precise.

However, we show in Table 4.5 that it is maximally precise from a bit-width of 1 to

5. The full-adder at bit l depends just on the carry-in from bit l − 1, the carry-out to

bit l + 1, one bit of each operand, and the resulting bit. Because each full-adder is

local and interacts with its immediate neighbours only, it should be possible to use

this property to construct an inductive proof of precision. We leave this, however,

for future work.

Example 4.1

Consider applying Algorithm 4.1 to a column i in the context µ = {xi 7→ 1, yi 7→

⋆, ci 7→ ⋆, ri 7→ 1, ci+1 7→ 1}.

Initially l = 1 and u = 3; next, because ci+1 is 1, l is set to 2; and next, because ri is

odd, l is incremented to 3. Now l = u, so in line 25, µ(yi)← 1 and µ(ci)← 1. Finally,

because the ci value has changed, propagation moves back to the prior column. �

Example 4.2

For a more complex example, involving both left and right sweeps across the bit-

vectors involved, consider x = 〈000001⋆⋆〉, y = 〈00000⋆1⋆〉, and r = 〈⋆⋆⋆⋆111⋆〉.

For i = 0, 1, 2, the body of Algorithm 4.1’s while loop does nothing. For i = 3,

however, the carry-in gets determined. More specifically, we find that l = u = 1,

and consequently c3 is determined to be 1. This causes the algorithm to revisit the

previous column (i = 2), this time finding a larger lower bound l = 3. But thismeans

all bits in that column are 1, that is, y2 = c2 = 1. Similarly, now that the carry-in

c2 has been determined, attention shifts to column 1, where it is determined that

x1 = c1 = 1. For column 0, propagation is particularly effective: From the outset we

had no knowledge of any of x0, y0, and r0. The propagation method finds l = u = 2,

which means we must have x0 = y0 = 1 and r0 = 0.

After this backwards sweep, the algorithm again proceeds right-to-left, picking

up at column 3, where c4 is determined as being 0. For columns 4 to 7, the remaining

unknown bits are then easily determined: clearly r4 = r5 = r6 = r7 = 0. At this point

the algorithm stops, having determined all bits. �
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Algorithm 4.1 Propagating information about the addition relation for an addition
x[n] + y[n] = r[n].

Require: x[n], y[n], r[n], lists of ternary variables
Require: ones(i) yields number of xi, yi, ci that are 1
Require: nonzeros(i) yields number of xi, yi, ci that are 1 or ⋆
1: Create c[n+1], a list of ternary variables
2: Initialise all c variables to ⋆
3: c0 ← 0
4: Create integers i, l, u
5: i← 0
6: while i < n do

7: l← ones(i)
8: u← nonzeros(i)
9: if ci+1 = 1 then l← max(2, l) end if

10: if ci+1 = 0 then u← min(1, u) end if

11: if ri = 1 and l is even then increment l end if

12: if ri = 1 and u is even then decrement u end if

13: if ri = 0 and l is odd then increment l end if

14: if ri = 0 and u is odd then decrement u end if
15: if l ≥ 2 then ci+1 ← 1 end if

16: if u ≤ 1 then ci+1 ← 0 end if

17: if u < l then return ⊥ end if

18: c′ ← ci
19: if l = u then

20: ri ← the parity of l
21: if ones(i) = l then
22: set each addend that is ⋆ to 0
23: end if

24: if nonzeros(i) = l then
25: set each addend that is ⋆ to 1
26: end if

27: end if

28: if c′ , ci ∧ i > 0 then
29: decrement i
30: else

31: increment i
32: end if

33: end while

An equivalent way to reason about the equations is using the truth tables for 3

(Figure 4.2). For instance, using the result bit equation, if there is only a single ⋆

value, re-arranging the equation to isolate the ⋆ value variable gives the value it

should take.
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The algorithm is linear in n: once some column i has been revisited owing to

ci+1 having been set, it will not be revisited again (except in the course of the overall

right-to-left sweep).

The soundness of Algorithm 4.1 follows from each step in the algorithm being

correct. Termination is somewhat less clear, because i may grow or shrink in

the body of the while loop. However, for successive iteration steps, consider the

pairs (s, n − i) of natural numbers, where s is the number of bits in x, y, r, and c

that are undetermined (⋆). It is easy to see that each iteration strictly decreases

(s, n − i) ordered lexicographically. That is, either some bits are determined (that

is, s decreases), or else s remains unchanged, and as a result of the lack of change,

i is incremented. Termination follows, since N
2, ordered lexicographically, is well-

founded.

4.4.2 Multiplication Propagators

In this section we describe two propagation methods that we combine to produce

our multiplication propagation solver. The combination is an efficient, albeit not

optimal, propagator. The two complement each other: for each method there are

instances where it can fix bits that the other cannot.

The first propagator enforces consistency over the number of trailing zeroes

of the operands. The second propagator is a more general version of the addition

propagator already described. Instead of performing an exclusive-or over just three

addends, we apply it over an arbitrary number of addends.

Consistency of the Number of Trailing Zeroes

This propagator exploits the fact that, given x× y = r, the sum of trailing zeroes of x

and y equals the number of trailing zeroes in r. If the sum is greater than, or equal

to, the bit-width, then the result will be zero.

For proof consider that x can be written as v× 2l, and y can be written as w× 2m,

where v and w are odd, and where l and m are the number of trailing zeroes in the

respective operands. Zero can be written as (1 × 2n). The result of multiplying the

values is v ×w × 2l+m. Because both v and w are odd, the bit in position m + l of the

result will be 1, and all less significant bits in the result are 0.
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Algorithm4.2 Enforcing a consistent number of trailing zeroes on amultiplication’s
xoperandwhere x×y = r and each variable is a vector of variables. For each position
in x the algorithm checks if that position can be the rightmost 1 value, and if not,
sets it to 0. We call it twice, once for x, y, r, and once for y, x, r.

Require: x[n], y[n], r[n], lists of ternary variables
1: ty = index of the least significant possible 1 value of y, (that is, yty = 1 or

yty = ⋆). If y = 0, then ty = n.
2: tr = index of the least significant 1 value of r.
3: min = min(ty, tr, n).
4: for i ∈ 0..(n − 1) do
5: if xi = 1 then return

6: else if xi , 0 then

7: for j ∈ 0..min do

8: if ( j + i ≥ n) ∨ (y j , 0 ∧ ri+ j , 0) then return

9: end if

10: end for

11: xi ← 0
12: end if

13: end for

Our propagator starts from the least significant bit of an operand and checks if

the bit can be 1; if it can, we stop. Otherwise, it sets the variable to 0 and continues

checking. The method is shown in Algorithm 4.2. We shall show an example of

running this propagator shortly.

Setting bits in the result r is performed separately. The number of trailing zeroes

in both x and y is summed, and that many trailing bits in r are set to zero.

Let us give some examples of reasoning about the trailing-zeroes, where we

assume the constraints are asserted at the top level.

Example 4.3

Consider the initial constraint (〈111⋆〉 × 〈11 ⋆ ⋆〉 = 〈1000〉). This gets strengthened

to (〈1110〉 × 〈1100〉 = 〈1000〉). The last bit of the first operand cannot be 1, because

then the result would have at most two trailing zeroes, so it is set to 0. Similar

reasoning holds for the second operand. Since this is the first example, let us trace

in detail how Algorithm 4.2 proceeds:

Consider x = 〈111⋆〉, y = 〈11 ⋆ ⋆〉, r = 〈1000〉. Initially min = min(2, 3, 4) = 2,

and soon we have i = 0, and j = 0. The first time line 8 is reached, the test is

(0+ 0 ≥ n)∨ (y0 , 0∧ r0+0 , 0), which fails. The second time, when j = 1, the test is

(1 + 0 ≥ n) ∨ (y1 , 0 ∧ r0+1 , 0), which also fails. Again, the third time, when j has
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reachedmin, (2+0 ≥ n)∨ (y2 , 0∧ r0+2 = 0)) fails. Hence x0 is set to 0, and attention

turns to x1. Because x1 = 1, we return (line 5). Note that x is now fully determined.

Next x and y are swapped, and the algorithm is called again. So let x = 〈11⋆⋆〉,

y = 〈1110〉, r = 〈1000〉. Initially min = 1, and soon we have i = 0, j = 0. The first

time line 8 is reached, the test is (0 + 0 ≥ n) ∨ (y0 , 0 ∧ r0+0 , 0), which fails (as

y0 = 0). The second time, when j = 1, the test is (1 + 0 ≥ n) ∨ (y1 , 0 ∧ r0+1 , 0),

and again this fails (as r1 = 0). Hence x0 is set to 0, and attention turns to x1.

We have x1 = ⋆, and again the test at line 8 fails repeatedly, first because y0 = 0,

and next because r2 = 0. So x1 is also set to 0, and so all bits have beendetermined. �

Example 4.4

Consider (〈1⋆〉 × 〈⋆⋆〉 = 〈00〉). At the start of Algorithm 4.2, ty is set to zero, and

tr is set to two. The algorithm will strengthen this to (〈1⋆〉 × 〈⋆0〉 = 〈00〉). This

makes sense: If the last bit of the second operandwas 1, there would be at most one

trailing 0 in the result, so the bit must be 0. �

Example 4.5

As another example of Algorithm 4.2, consider (〈⋆ ⋆ ⋆〉 × 〈0 ⋆ 0〉 = 〈10⋆〉). First,

because the second operand has one trailing 0, the result must have at least one

trailing 0, which yields (〈⋆ ⋆ ⋆〉 × 〈0 ⋆ 0〉 = 〈100〉). Second, if the last bit of the first

operand is 1, then it is not possible to get exactly two trailing zeroes in the result.

So it must be 0, yielding (〈⋆⋆ 0〉 × 〈0⋆ 0〉 = 〈100〉). Note that the second bit of both

operands must be 1. The algorithm described in the next section sets these bits. �

Bounds Consistency over Partial Products

The secondmultiplication propagator we implement is a generalised version of the

addition propagator that we described in subsection 4.4.1. The implementation is

complicated because it adds an arbitrarily large number of partial products.

Our bounds consistency propagator operates on a table of partial products (see

Figure 4.3). The table of partial products contains a column for each bit of the
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x3y0 x2y0 x1y0 x0y0

x2y1 x1y1 x0y1

x1y2 x0y2

x0y3

r3 r2 r1 r0

Figure 4.3: A 4-bit multiplication’s table of partial products. Column zero is on the
right.

output. In each column, one value is taken from each operand, where the sum of

their indices equals the index of the column. The two values are conjoined. For

example, column 2 contains {x0∧y2, x1∧y1, x2∧y0}. The exclusive-or of these values,

when combined with the carry-in, gives the resulting bit. However, the formula for

the carry-in quickly gets complicated, so instead of summing using exclusive-or,

we use normal integer addition, and take the parity of the result. Since information is

partial, rather than working with integers, we deal with integer intervals. For this

reason we refer to the technique as column bounds propagation.

For each column in the table of partial products, without considering that some

partial products contain the same variables, the propagator establishes an integer

interval (bounds) on both the partial product count (ppc) and the sum (which includes

the carry).

Given three vectors of abstract variables x, y and r of bit-width n, where x[n] ×

y[n] = r[n], we create a set of products (Pc) for each column number c, in (0 . . . (n−1)).

Let Pc = {(i, j) | i + j = c}. The partial product count is the number of partial products

known to evaluate to 1, that is: ppcc = |{(i, j) ∈ Pc | xi = y j = 1}|. We define ppc↓c ,

to be the lower bound of the partial product count, that is, ppcc evaluated with all

⋆ assignments (µ(v) = ⋆), replaced by 0 (µ(v) ← 0). The upper bound ppc↑c is the

sum evaluated with all ⋆ values in the partial assignment replaced by 1. The sum

is defined recursively: sum0 = ppc0, and sumc = ppcc + ⌊
sumc−1

2 ⌋, for c in {1 . . . (n − 1)}.

That is, the sum is the sum of the partial products in column c, together with all
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Algorithm 4.3 Column bounds propagator for multiplication x × y = r

Require: x[n], y[n], r[n], in the context of x × y = r.
1: Pc = {(i, j) | i + j = c}
2: for c ∈ {0..n − 1} do
3: ppc↓c ← |{(i, j) ∈ Pc | xi = y j = 1}|

4: ppc↑c ← |{(i, j) ∈ Pc | xi , 0 ∧ y j , 0}|
5: end for

6: sum↓
0
← ppc↓

0

7: sum↑
0
← ppc↑

0
8: for c ∈ {1..n − 1} do

9: sum↓c ← ppc↓c + ⌊
sum↓

c−1

2 ⌋

10: sum↑c ← ppc↑c + ⌊
sum↑

c−1

2 ⌋

11: end for

12: repeat

13: for c ∈ {0..n − 1} do
14: if rc , ⋆ ∧ parity(sum↓c ) , rc then

15: increment sum↓c
16: end if

17: if rc , ⋆ ∧ parity(sum↑c ) , rc then

18: decrement sum↑c
19: end if

20: end for

21: Perform integer bounds propagation on sum↓, sum↑, ppc↓ and ppc↑ variables
(Algorithm 4.4)

22: if for some column c, ppc↓c > ppc↑c or sum
↓
c > sum↑c then

23: set µ = ⊥ and return

24: end if

25: Do singleton interval propagation on x, y, and r variables (Algorithm 4.5)
26: until all x, y and r bit values are stable

the carries that spill into that column. For this we likewise use lower and upper

bounds sum↓c and sum↑c .

When the lower and upper bounds of a sum coincide and sumc is odd, then the

result of that column is 1 (that is, resultc = 1). If it is even then resultc = 0.

We perform propagation on the intervals until they reach a fixed point. The

detailed method is shown in Algorithm 4.3. Lines 1–5 initialise the ppc variables by

counting the minimum and maximum number of partial products in each column.

Lines 6–11 initialise the lower and upper bounds of the sum, for i ∈ {1..n} (as usual

the division rounds towards zero). Lines 12–26 is the workhorse of the algorithm

which repeatedly tightens lower and upper bounds of the sum and ppc variables.

First (lines 13–20), if the result bit of a column is known, then we enforce that the
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Algorithm 4.4 Column bounds propagator: Integer bounds propagation

1: Apply propagation using the following propagators:

sum↓
0

← max(sum↓
0
, ppc↓

0
)

sum↑
0

← min(sum↑
0
, ppc↑

0
)

ppc↓
0

← max(sum↓
0
, ppc↓

0
)

ppc↑
0

← min(sum↑
0
, ppc↑

0
)

sum↓c ← max(ppc↓c + ⌊
sum↓

c−1

2 ⌋, sum↓c )

sum↑c ← min(ppc↑c + ⌊
sum↑

c−1

2 ⌋, sum↑c )

ppc↓c ← max(sum↓c − ⌊
sum↑

c−1

2 ⌋, ppc↓c )

ppc↑c ← min(sum↑c − ⌊
sum↓

c−1

2 ⌋, ppc↑c )

sum↓
c−1

← max(2 × (sum↓c − ppc↑c ), sum
↓

c−1
)

sum↑
c−1

← min(2 × (sum↑c − ppc↓c ) + 1, sum↑
c−1

)

lower and upper bounds of the sum have the same parity (the function parity is

defined by parity(k) = k mod 2). Second (line 21), bounds propagation is applied.

We describe this shortly, and Algorithm 4.4 gives details. These last two steps are

repeated until all lower and upper bounds for sum and ppc are stable.

Next (lines 22–24) possible inconsistency is detected, and finally (line 25) bit

values are extracted in cases where lower and upper bounds of intervals coincide.

The details of this are provided as Algorithm 4.5. There are three steps involved.

First, if the lower and upper bound of a column’s sum coincide then the result bit

for that column is determined (Algorithm 4.5’s lines 2–4). Second, if the lower and

upper bounds of a column’s ppc are the same and there are already enough ones in

the column, then any partial product of form ⋆ × 1 in that column must in fact be

0 × 1, and similarly for a partial product of form 1 ×⋆ (lines 5–14). And third, dual

to the last case, if the lower and upper bounds coincide and every partial product

which could yield 1 in fact must yield 1, then we can change the ⋆ values to 1 (lines

15–24).

The steps of Algorithm 4.3 just described may set bits of x, y and/or r. Hence

the whole process is repeated, until no new bit values are deduced. Again, the

outermost repeat loop is guaranteed to terminate, as the only changes to bit values
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Algorithm 4.5 Column bounds propagator: Fixing bits by singleton interval prop-
agation

1: for c ∈ {0..n − 1} do
2: if sum↓c = sum↑c then

3: rc ← parity(sum↓c )
4: end if

5: if ppc↓c = ppc↑c = |{(i, j) ∈ Pc | xi = 1 ∧ y j = 1}| then
6: for (i, j) ∈ Pc do

7: if µ(xi) = ⋆ ∧ µ(y j) = 1 then
8: µ(xi)← 0
9: end if

10: if µ(xi) = 1 ∧ µ(y j) = ⋆ then

11: µ(y j)← 0
12: end if

13: end for

14: end if

15: if ppc↓c = ppc↑c = |{(i, j) ∈ Pc | xi , 0 ∧ y j , 0}| then
16: for (i, j) ∈ Pc do

17: if µ(xi) = ⋆ ∧ µ(y j) , 0 then
18: µ(xi)← 1
19: end if

20: if µ(xi) , 0 ∧ µ(y j) = ⋆ then

21: µ(y j)← 1
22: end if

23: end for

24: end if

25: end for

involved replace ⋆ values by 0 or 1. The integer bounds propagation implemented

byAlgorithm 4.4was inspired by similar bounds propagationmethods in constraint

programming [MS98] and CSP techniques. It propagates lower and upper integer

bounds for column sums, both from less significant columns to more significant

columns, and vice versa. Note that this part of the process must terminate because

the steps involved can only tighten, never relax, bounds. The following example

shows how the propagation works.

Example 4.6

Consider the situation where sum4 = [2, 5], ppc5 = [1, 1], sum5 = [1, 2], and r5 = ⋆.

Here [a, b] means that a is the current lower bound, and b the upper bound. As the

result bit is unknown, lines 12–20 of Algorithm 4.3 will not change the sum.

Next the propagators of Algorithm 4.4 are applied to the equation [1, 2] = [1, 1]+

⌊
[2,5]
2 ⌋ = [1, 1] + [1, 2] = [2, 3]. Note that sum↓

i
= max(ppc↓

i
+ ⌊

sum↓
i−1

2 ⌋, sum
↓

i
) when
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instantiated reads sum↓
5
= max(1+ 2/2, 1), so the lower bound of sum5 tightens from

1 to 2. Also note that sum↑
i−1
= min(2 × (sum↑

i
− ppc↓

i
) + 1, sum↑

i−1
) when instantiated

reads sum↑
4
= min(2× (2− 1)+ 1, 5), so the upper bound of sum4 tightens from 5 to 3.

Substituted into thedefinitionof sum5, thefinal bounds are [2, 2] = [1, 1]+⌊ [2,3]2 ⌋ =

[1, 1] + [1, 1] = [2, 2]. Since the lower and upper bound of the sum are both 2,

Algorithm 4.5 (line 3) will set r5 = 0. �

Our column bounds propagator is powerful; it subsumes each of the following

three natural multiplication propagators.

First, it subsumes the propagator that sets some of the most significant bits of

the result to zero when the multiplication of x and y cannot cause overflow. That is,

in all positions i where 2i > x↑ × y↑, set ri to 0. It is not hard to see that our column

bounds propagator subsumes this. When x and y take their maximum values, the

sum of each column equals sum↑
i
. Eventually the upper bound of the sum will go

to zero, and when it does, the upper and lower bound of the sumwill both be zero,

hence the result bit will be set to zero.

Example 4.7

Applying column bounds propagation (Algorithm 4.3) to (〈000 ⋆⋆〉 × 〈000 ⋆⋆〉) =

r[5], at line 25 we have sum0 = [0, 1], sum1 = [0, 2], sum2 = [0, 2], sum3 = [0, 1], sum4 =

[0, 0]. So r4 is set to 0. Note that, when the operands take their maximum possible

values, so we have (00011)2 × (00011)2, the number of true partial products in each

column including carries, equals the sums’ upper bounds. �

Second, our propagator subsumes the propagation principle for multiplication

that, if the least significant j bits of both the operands are known, then the least

significant j bits of the result are uniquely determined. For our column bounds

propagator, at column j, when all the bits of the operands in positions less than or

equal to j are fixed, there will be no ⋆ values in partial products of those columns.

Without ⋆ values, the ppc in each of those columns is exact, so the sum in each

of those columns is known, and by taking the parity of the sum, the result bit is

calculated.
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Example 4.8

Applying column bounds propagation to (〈⋆01〉 × 〈⋆10〉 = r[3], at line 25 we have

sum0 = [0, 0], sum1 = [1, 1], sum2 = [0, 1]. So r0 is set to 0, and r1 is set to 1. �

Third, our propagator subsumes the propagator that, when some of the least

significant bits of the result and one operand are known, the multiplicative inverse

(when it exists) of the partially known operand can derive extra known bits of the

other operand.

Example 4.9

Consider 〈⋆ ⋆ 11〉 × 〈⋆ ⋆ ⋆⋆〉 = 〈⋆110〉. We can restrict our attention to the

right-most sections where one of the operands and the result are entirely fixed:

〈11〉 × 〈⋆⋆〉 = 〈10〉. The multiplicative inverse of 3 modulo 22 is 3, that is, (3 × 3)

mod 4 = 1. Multiplying the result by this inverse gives 2, so we can update the

second operand to 〈⋆ ⋆ 10〉. �

It is well known that x has a multiplicative inverse modulo 2n if and only if x is

odd.

Again, column bounds propagation subsumes this. If the least significant w bits

of both r[n] and x[n] are fixed, and x is odd, then bits (w − 1) . . . 0 of y[n] will be fixed,

as can be seen by a simple proof by cumulative induction.

• For the base case, in column 0 we have a single addend, x0y0, and by assump-

tion x0 = 1 (x is odd). Hence the sum will be [0,1]. Because r0 is known, the

interval will be tightened. If r0 is 1, it is tightened to [1, 1], and y0 will be

set by Algorithm 4.5 at line 21. Otherwise, first the sum and then ppc will be

tightened to [0, 0], and y0 will be fixed by Algorithm 4.5 at line 11. Hence y0

is determined, in fact equal to r0.

• Now assume that y j is determined for all j < k. We show that yk must be

determined. The addends of column k are xky0, xk−1y1, . . . , x1yk−1, x0yk. But

since y0, . . . yk−1 as well as x0 = 1 are determined, each of these addends is

0 or 1, except the last, which is yk. That is, the upper and lower bound of

the sum differ by at most 1. Because the result bit is known, the bounds will
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be tightened by Algorithm 4.5. That is, the equation for sumk boils down to

c + yk = rk for some integer constant c. Hence the propagation algorithm will

determine yk, setting yk to rk’s value (if c is even) or to its complement (if c is

odd).

From this it follows that the column bounds propagator will fix at least as many

bits as the rule that exploits multiplicative inverses.

Example 4.10

Consider x × y = r, with x = 〈⋆ ⋆ 1〉, y = 〈011〉 and r = 〈001〉. When we process the

0th column, we begin with x0 ∧ y0 = r0, which after substituting in known values

gives 1 = 1.

When we process the 1st column, we begin with x0y1 ⊕ x1y0 = r1, which after

substituting in known values gives y1 ⊕ 1 = 0, which sets y1 to 1.

When we process the 2nd column, we begin with y2x0 ⊕ y1x1 ⊕ y0x0 = 0, which

after substituting gives y2⊕1⊕1 = 0, which sets y2 to 0. So y[3] is set to 〈011〉, which

indeed gives the multiplicative inverse of 3, that is, (3 × 3) ≡8 1. �

Example 4.11

A simple example for which the propagator is not optimal, is: x[2] × y[2] = r[2] with

µ = {x = 〈1⋆〉, y = 〈1⋆〉, r = 〈1⋆〉}. Substituted into the Boolean formula definition

of multiplication gives r0 = (x0 ∧ y0), 1 = x0 ⊕ y0. Since neither x0 nor y0 can be 1, r0

must be 0. Our propagator does not deduce that the result must be even, because it

conservatively treats the variables in the partial products of each column as being

distinct. �

The column bounds propagator generally subsumes interval propagation, but

not quite. The reason it may fail is that multiplication is signedness-agnostic. For

example, 〈111⋆〉 × 〈111⋆〉 = 〈⋆⋆⋆⋆〉, interpreted as signed intervals is: ([−2,−1]×

[−2,−1]) = [−8, 7], which can be strengthened to ([−2,−1]× [−2,−1]) = [1, 4]. Hence

the most significant bit of the result must be 0. However, the bounds analysis does

not determine this.
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4.4.3 An Unsigned Division Propagator

We propagate unsigned division by using a truncating integer division propagator

that operates on unsigned integer bounds.

We begin by converting the operands and results from 3 to the integer bounds

domain by calculating for each value the maximum and minimum value that the

ternary variable contains. Next we enforce bounds consistency over those integer

domains. Then we convert back to 3. We perform these three steps until a fixed

point is reached and the representation in 3 is stable. This terminates because we

do not allow known values to become ⋆.

Like the multiplication propagator, this propagator is not optimal. As a simple

example of non-optimality, the propagator is not able to deduce that the numerator

must be odd in this case: (〈⋆⋆〉 ÷u 〈⋆1〉) = 〈⋆1〉. Interpreted as unsigned intervals

this says ([0, 3] ÷u [1, 3]) = [1, 3]. Now it is not possible for the numerator to be 0,

so the interval can be tightened to [1,3]. It is possible for each interval to take its

extreme value, so no further propagation is possible. Converting the intervals back

to the 3 domain leaves the ternary variables unchanged. However, if the numerator

takes the value of 2, the denominator can be 1 or 3. So, the result must be either 0 or

2, neither of which the result can express. So, it is impossible for the numerator to

be 2, so it can be either 1 or 3, so the least significant bit of the numerator must be 1.

Note that it is not straightforward to utilise the multiplication propagator for

integer division. To turn (a÷u b) = q into a = bq+ r∧ (b , 0⇒ r < b) is unattractive,

and it is more profitable to utilise the fact that unsigned division cannot overflow,

whereas multiplication can. The Beaver bit-vector solver (subsection 3.23.6) per-

forms this same transformation in another context. As we show in the section 4.7,

because unsigned division does not overflow, our division propagator is quite ef-

fective and able to determine many of the available bits.

Analysing multiplication using this interval approach is not practical because

of the prevalence of overflow.

4.5 A Propagation Solver

The previous section described a number of propagators for various bit-vector

operations. A propagation solver runs propagators until a global fixed point is
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reached. When each propagator is at a fixed point, the global fixed point has been

reached. Initially the partial assignment of all the nodes’ bits is ⋆, then the partial

assignment of constants is updated to be the respective value. A propagator is only

run when the partial assignment to its operands or output change.

In an attempt to reduce the number of times that expensive propagators are

run, we use a fast and a slow worklist. Propagators that are fast, such as the bit-

vector exclusive-or propagator, are run before expensive propagators such as the

signed remainder propagator. We show later, for instance in Table 4.3d, that the

exclusive-or propagator can be hundreds of times faster than the signed remainder

propagator.

We run the propagation engine twice to a global fixed point. The first time we

run propagation using only bit-vector constants or 1/0 as sources of fixed bits. In

this phase, information never flows downwards from results to operands. Initially,

all the propagators that depend on the constant values are added to the worklist.

Propagators are taken fromthework list one byone and run. If apropagator changes

any ternary assignment, then all the propagators that depend on that assignment

are added into the worklist. The propagation engine continues until the worklist is

empty. When the worklist is empty, a global fixed point has been reached.

The second time that the propagation engine is run, the root node is set to true,

and again we propagate until a global fixed point.

Once propagation reaches a global fixed point, how the results of the analysis

can be used depends on what was assumed before propagation started. We discuss

using the results of the analysis in the next section.

4.6 Using the Results

After the fixed point is reached, simplifications to the expression are applied—

hopefully saving time overall. After bit propagation we use the partial assignment

in three different ways. First, some expressions are replaced by the values discov-

ered. Second, some values are replaced and an equality conjoined at the top level.

Third, individual bits are conjoined with the CNF.

In the first case, before the root node is set to true, if an expression is found to

have a particular value, then the node is replaced by that value. For instance, given
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the expression ((0[3] :: x[2]) = 7[5]), bit propagation will discover that the equality

expression is necessarily 0, so the formula can be replaced by 0. With the root node

not set to 1, bit propagation gives the values that nodes always take. There can

never be a conflict, and variables’ bits will never be fixed (because information only

flows upwards).

When bit propagation is performed with the root node set to 1, expressions

are replaced by constants and the expression conjoined to the top. Consider the

sub-expression: “(t0 =
t t1) ∧

t p”. It is unsound to replace this with 1, because the

condition that t0 must equal t1 is lost. Instead, this sub-expression is replaced by 1,

and (t0 = t1) ∧ p is conjoined with the root node.

Nodes that are partially set are stored and conjoined with the CNF expression

of the formula just before sending it to the SAT solver. As an example, say the

analysis reveals that t = 〈1 ⋆ 1 ⋆ 0〉. After bit-blasting, there is a Boolean formula

produced for each element of this bit-vector that produces the value of the node.

When the CNF encoding is run, each of these Boolean formulae is made equivalent

to some fresh variable, say t = 〈b4, b3, b2, b1, b0〉. For each value that we know must

be set to either 1 or 0, we assert the appropriate literal. So in our example, we add

three clauses to the CNF: {¬b0, b2, b4}. These clauses fix the value of the SAT solver’s

variables, simplifying other clauses that contain the same variables.

4.7 Evaluation of Theory-Level Bit Propagation

We compare STP2 r1611 with and without theory-level bit propagation, and for ref-

erence compare against the current version of the SMT-COMP 2011 (QF BV) winner

Z3 3.2 [dMB08b] with and without bit propagation.

To isolate the effect of bit propagation, we created a standalone executable

that reads SMT-LIB2 format, applies bit propagation, then outputs the simplified

result. We used this to pre-process input to Z3. The processor applies two of

the three techniques for simplifying expressions, it does not conjoin information

about partially specified sub-expressions. In STP2, partial information about sub-

expressions is used to add extra information.

We perform the evaluation with the same experimental configuration as in

section 3.19. We took the SMT-LIB QF BV benchmark set as of January 2012. We
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discarded the asp family benchmarks which is large (29GB), and contains encod-

ings of problems we are uninterested in, for example: towers of Hanoi, travelling

salesperson, and Sudoku problems. We discarded the mcm family because it uses

syntax that STP2 cannot yet parse. We discarded the bruttomesso:core family as it

contains no arithmetic, a key part of the software verification benchmarks we are

interested in. We limited each family to 50 randomly chosen benchmarks and only

chose a benchmark if some solver required more than 1 second to solve it. We were

left with 715 benchmarks in 31 families. Finally, we used a memory limit of 3GB

and a time limit of 500 seconds on a single core of an Intel E5507 Linux computer

to run the benchmarks.

When multiple solvers returned a result for a benchmark, they always agreed

about the result. Moreover, all the results agreed with the expected status as given

by annotations in the benchmarks.

The results are shown in Table 4.2. For each family and solver, the number of

failures and the number of those failures due to exceeding the memory limit is

given. For each benchmark family, the best result (fewest failures) is highlighted

with boldface type.

Z3 3.2 with bit propagation has the fewest failures of the solvers we compare,

10 fewer than with bit propagation disabled. Of the solvers we compare, STP2with

bit propagation is the best on the most families: 18.

Compared to no bit propagation, bit propagation enables 10 extra benchmarks

to be solved. This is true for both STP2 and Z3, although the gains for the two are

on different problems.

For STP2 to perform bit propagation on the 715 problems takes 65 seconds.

When preprocessing Z3’s input, bit propagation takes 210 seconds. The difference

is because as a pre-processor many simplifications have not been applied, so bit

propagation operates on a larger expression. Z3 3.2 with bit propagation has the

lowest overall time and the fewest failures.

4.8 Testing that Propagators Are Optimal

In this section we describe how we generated the evidence that (most of) our

propagators are optimal. We use the details in this section to later address the
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STP2 r1611 STP2+bp Z3 3.2 Z3+bp

Family # time fail time fail time fail time fail

VS3 11 0 1/11 0 1/11 548 7 847 7
brummayerbiere 28 231 1/12 271 1/12 583 2/13 707 2/13
brummayerbiere2 50 2593 17 1812 14 2626 1/28 1388 1/18
brummayerbiere3 50 1078 31 1832 29 1698 30 1476 30
bruttomesso:lfsr 50 6735 4 7353 5 862 838

bruttomesso:simple proc 50 2866 6 3508 5 1742 3 2993 2

calypto 17 10 12 9 12 947 11 31 13
galois 3 0 3 0 3 0 3 0 3

gulwani-pldi08 3 26 25 21 9

pipe 1 0 1 0 1 0 1 0 1
rubik 6 872 1 838 1 89 1 301

sage:app1 50 269 281 220 187

sage:app12 14 20 0 0 0

sage:app2 1 0 0 11 0

sage:app7 6 0 0 9 10
sage:app8 50 461 20 66 56
sage:app9 50 541 19 60 47
spear:cvs v1.11.22 28 65 59 130 139
spear:inn v2.4.3 50 55 46 297 277
spear:openldap v2.3.35 5 7 3 513 0 5 0 5
spear:samba v3.0.24 50 128 133 589 528
spear:wget v1.10.2 41 91 85 488 334
spear:xinetd v2.3.14 1 0 0 2 1
spear:zebra v0.95a 5 3 3 14 15
stp 1 20 23 11 23
stp samples 22 4 2 3 2 1 2 4 2
tacas07 3 89 1 331 709 964
uclid contrib smtcomp09 7 703 1 929 1893 1659
uclid:catchconv 50 65 49 142 166
uum 7 45 6 30 6 11 6 11 6

wienand-cav2008:Booth 5 82 4 82 4 35 4 42 4

Sum 715 17071 115 18267 105 13820 114 13065 104

Time incl. penalty 74686s 70872s 70934s 65169s

Table 4.2: STP2 and Z3 performance with and without bit propagation. “STP2” is
STP2with bit propagation disabled. The number of benchmarks that failed is given
for each family. The number of times the memory limit was reached is indicated,
for example, 1/11 means 11 failures, one of which was a memory out. All times are
in seconds. The times given are the sum of the times for the successful instances
only. Limits of 500 seconds and 3GB are used. The bottom row gives the times with
a penalty of 501 seconds counted for each failed problem. Times are measured on
a single core of an Intel E5507 Linux computer.

question: Do the results from applying bit propagation improve if more precise

propagators are used?
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We test that our implemented propagators are sound by comparing their effects

against the optimal propagator’s effects. The propagators we implement should

produce a superset of the effect of the optimal propagator. That is, if the optimal

propagator fixes a bit, then all propagators should produce that same value for the

bit, or ⋆. For propagators we expect to be optimal, the sets from both should be the

same.

We used two techniques to generate (the effect of) the optimal propagator. First,

at small bit-widths, we generate the effect by exhaustively generating operands,

then applying an operation to those operands, and then storing the operands and

the result in a set. To determine the effect of the optimal propagator for abstract

variables, an algorithmsearches through the stored tuples andfinds any calculations

that are contained in that set. It applies the abstraction function to each matching

tuple, then applies the join operation to those, giving the result of the optimal

propagator. If no matching concrete values are found, it returns ⊥.

More formally, to calculate the effect of the optimal propagator on the function

f (x[n], y[n]) = r[n], where x[n], y[n], r[n] are lists of ternary variables:

• Apply the function f to all possible concrete operands, and store the tuple.

For i and j ∈ (0 . . . 2n − 1), add (i, j, f (i, j)) into a set S.

• Search through S for concrete values that match elements in the set. Collect

elements 〈s0, s1, s2〉, where (s0 ∈ µ(x) ∧ s1 ∈ µ(y) ∧ s2 ∈ µ(r)).

• Apply the abstraction function α to each matching element.

For example, (〈10 ⋆ 0〉 ≪ 〈⋆ ⋆ ⋆⋆〉) = 〈1 ⋆ ⋆⋆〉 matches the following tuples:

〈(1000)2, (0000)2, (1000)2〉, 〈(1010), (0000)2 , (1010)2〉, 〈(1010), (0010)2 , (1000)2〉. Apply-

ing the abstraction function gives: (〈10 ⋆ 0〉 ≪ 〈00 ⋆ 0〉) = 〈10 ⋆ 0〉, which is the

result of the optimal propagator.

For each two-input propagator we exhaustively generated all combinations

for 1 bit through to 6 bits. At 6 bits we checked all 318 distinct combinations.

For propagators we believed were optimal, we checked: that the propagator is

idempotent, the propagator and optimal propagator return ⊥ at exactly the same

time, and that the resulting partial assignments are the same. This identified many,

but not all of the defects we found in our implementations of the propagators.
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approx(ϕ) = app(ϕ,⊥)

app(ϕ, r) = if unsat(ϕ) then r
else let s = r ⊔ α{model(ϕ)}

in app(ϕ ∧ ¬γ(s), s)

Figure 4.4: Finding the optimal propagator: The approach of Reps, Sagiv and Yorsh.
[RSY04]

Both techniques we use to generate the effect of the optimal propagator gener-

alise from concrete values to abstract values by moving up the lattice.

At larger bit-widths, exhaustively generating values is impractical, so instead

we compared our propagators against the optimal propagator, produced using the

approach proposed by Reps, Sagiv and Yorsh [RSY04] (Figure 4.4). They show

how to produce the result of the optimal propagator for domains that satisfy the

ascending chain condition, which 3does. Their algorithmuses a decision procedure

which produces a model. We refer to their algorithm as RSY.

The approx method of Figure 4.4 is called with ϕ where ϕ describes the tuples

that satisfy a relation. If the set of tuples is empty, then ⊥ is returned, otherwise a

search occurs to find tuples that are not contained in r. When no such r exists, then

r is the best result possible.

Intuitively, rather than taking the union of all the tuples in the set described

by the abstract variables, like the exhaustive approach does, RSY searches for new

tuples that cause the abstract variables to change. If there are k ⋆ values initially,

then the algorithm will perform the abstraction function at most k + 1 times.

RSY first searches for a model, then for models which cause each of the bits to

take the opposite value, that is, if they have been 1 in all prior models, to take a 0.

Example 4.12

Consider applying RSY to 〈⋆〉 × 〈⋆〉 = 〈0〉.

• Before calling the approx function, ⋆ values are replaced by fresh variables,

setting ϕ to 〈v0〉 × 〈v1〉 = 〈0〉.

• This is encoded as CNF, and its satisfiability is checked. In this case it is

satisfiable, so the partial assignment is set to, say, s(v0)← 0, s(v1)← 1.
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• Next the algorithm searches for a model where v0 or v1 take a different value,

that is for a solution to (v0 × v1 = 0) ∧ (v0 , 0 ∨ v1 , 1).

• This is satisfiable. The returned model might be v0 = 0, v1 = 0. Now the

abstraction function is applied to themodel, and then themeet takenwith the

current partial assignment. That is: s(v0) = s(v0) ⊔ α(0), s(v1) = s(v1) ⊔ α(0),

giving s = {v0 = 0, v1 = ⋆}.

• Next the algorithmasks for amodelwhere v0does not equal 0, that is: (v0×v1 =

0) ∧ (v0 , 0), which returns satisfiable, updating the partial assignment to:

s = {v0 = ⋆, v1 = ⋆}.

• All of the variables are⋆, so thenext call to the SATsolver returnsunsatisfiable,

and the algorithm returns v0 = ⋆, v1 = ⋆

It is concluded that even the optimal propagator will not determine any bits for the

example. �

To further test propagators, we generated random tuples at bit-widths between 7

and 256 and tested that the result of our propagators is the same or a superset of

the result from RSY.

Using this approach, an instance of a defect that we encountered at higher

bit-width was that our implementation of left and right-shift relied on the 64-bit

machine’s semantics (using just the bottom8 bits of the second argument) as distinct

from the SMT-LIB semantics (use all the bits). So given a 64-bit value left shifted by

a large number with many trailing zeroes, our defective implementation returned

the same input, rather than zero as the QF BV semantics dictates.

4.9 An Optimal 6-Bit Multiplication Propagator

The multiplication propagators that we have discussed so far are not optimal. In

this section we describe a multiplication propagator that is optimal for the least

significant n bits (we use n = 6). The idea we present is generally applicable.

However, in practice it will often be too slow to be useful.

We start by exhaustively generating assignments. Then apply themultiplication

propagatorsdescribed in subsection 4.4.2, then compare the resultswith the optimal
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propagator. Clauses are constructed to assign values that were missed by the

multiplication propagators, and added to a SAT solver.

Example 4.13

Given (〈1⋆〉 × 〈1⋆〉 = 〈1⋆〉), the propagators we have introduced will fail to deter-

mine that the least significant bit of the result must be 0. Hence, we remedy this by

generating the clause (x1 ∧ y1 ∧ r1)→ r0. Note that the left-hand side expresses the

literals fixed prior to calling the multiplication propagator. �

The algorithm we use is shown in Algorithm 4.6. Because implementations

of two watched literals [MMZ+01] and unit propagation are so efficient, we pre-

calculate clauses that give the effect of the optimal propagatorwhen combinedwith

the other propagators. We use the SAT solver, just with unit propagation, and with

search as a multiplication propagator.

The algorithm compares the effect of the optimal propagator, to another propa-

gator. Whenever the effects differ, clauses are generated that explain the difference.

Immediately after generating the clauses that explain the difference, they are con-

joined with the clauses that have already been discovered. The algorithm traverses

from low to high bit-widths. At bit-width i where i , 1, the clauses for an optimal

multiplication propagator at bit-width i − 1 have already been generated.

This approach is ideal for multiplication because the same clauses can be used

to propagate on the least significant bits irrespective of the bit-width. The clauses

that we calculate for the least significant 6-bits can be applied to multiplications of

lesser and greater bit-width.

Running Algorithm 4.6, for n = 6, produces 56,943 clauses. However, we did

not remove all the redundant clauses, so a smaller number of clauses could have

the same effect.

The clauses vary in length from 4 to 13 literals, so the probability of any given

clause setting values in a random assignment to a multiplication, or detecting

a conflict varies from about 10%, to .0005%. Each clause requires work to be

performed at runtime, but might avoid time spent performing conflict analysis.

How useful a clause is, depends on how often it is applied, and how much work it

saves minus the cost of applying unit propagation to it.
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Algorithm 4.6 Generating clauses for n-bit multiplication

Require: n the bitwidth
1: Create ϕ , a set of CNF clauses
2: ϕ← ∅
3: for i ∈ 1 . . . n do

4: Create x[i], y[i], r[i], lists of ternary variables
5: for all distinct assignments to: 〈x[i], y[i], r[i]〉 do

6: repeat

7: perform trailing zero propagation
8: perform partial product bounds consistency
9: perform unit propagation of 〈x, y, z〉 on ϕ

10: perform unit propagation of 〈y, x, z〉 on ϕ
11: until at a fixed point
12: (〈xp, yp, rp〉 ← maxPrecise(x, y, z))
13: if 〈xp, yp, rp〉 , 〈x, y, z〉 then
14: Set difference to the bits fixed in 〈xp, yp, rp〉, but not in 〈x, y, z〉
15: for all d ∈ difference do
16: Add to ϕ the implication that the fixed bits of, 〈x, y, z〉 implies d
17: end for

18: end if

19: end for

20: end for

21: Output ϕ

4.10 Propagator Evaluation

Tomeasurewhether optimal propagators improve upon the resultswe have already

presented (Table 4.2), we applied RSY after applying our imprecise propagators

(multiplication, division, and remainder). None of the benchmarks contain signed

modulus. We placed a limit of 500 seconds on each call to RSY; 594 instances

finished. Of the problems that finished, extra bits were only fixed in one case;

however, these extra assignments did not reduce the time taken.

We compare the precision of our propagators versus the precision of STP2’s CNF

encoding with unit propagation in Table 4.3a–Table 4.3d. Both begin with exactly

the same initial assignment. We compare the effect of propagation for varying levels

of information content. We compare on 100,000 64-bit values, with a fraction of bits

in the operands and result set to 0 or 1. For each run, we generated two random 64

bit operands, we generated assignments that are random and uniform over 0 and 1.

Then we applied the operation to those, saving the result. At the 1% level, next we

set 99% of the bits of the operands and the result to ⋆. Likewise at the other levels.

For example, with 5% information content, 2.5% of bits can be expected to be set to
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Operation 1%
UP time prop. time UP bits prop. bits %

signed greater than equals 0.06s 0.01s 4 8 50%
unsigned less than 0.04s 0.06s 6 9 66%
equals 0.09s 0.01s 333 333 100%
bit-vector xor 0.06s 0.08s 1880 1880 100%
bit-vector or 0.04s 0.07s 95567 95567 100%
bit-vector and 0.06s 0.08s 95245 95245 100%
right shift 0.13s 2.32s 1604489 1604711 99%
left shift 0.15s 2.27s 1615256 1615505 99%
arithmetic shift 0.13s 3.97s 762885 767828 99%
addition 0.04s 0.09s 41 42 97%
multiplication 0.36s 0.21s 1473 1473 100%
multiplication (max n = 6) 0.71s 4.34s 1437 1437 100%
unsigned division 3.71s 0.99s 898513 899446 99%
unsigned remainder 4.01s 9.94s 22 856 2%
signed division 0.17s 3.38s 642 26850 2%
signed remainder 0.26s 30.68s 8 286 2%

Table 4.3a: Comparison of unit propagation and bit-blasting at 1%. 100000 iterations
at 64 bits.

0, 2.5% to 1, and 95% to ⋆. The time we give excludes the time to create the random

assignments. ‘UP time’ is the time to run unit propagation on a pre-generated CNF,

‘prop. time’ is the time to run the propagators, ‘UP bits’ is the number of extra bits

fixed after calling unit propagation. ‘prop. bits’ is the number of extra bits fixed by

the propagators. ‘%’ is the percentage of the bits fixed by the propagators that were

fixed by unit propagation over the bit-blasted representation. Times are given in

seconds and were measured on a single core of an Intel Q8400 Linux computer.

In Table 4.3a–Table 4.3d, the “multiplication (max n = 6)” entry corresponds to

the propagator described in section 4.9.

For some operations, the CNF encoding assigned all possible values. Namely

for equals, bit-vector exclusive-or, bit-vector or, and bit-vector and. That is, no

initial assignments were found for which the CNF encoding of these operations

was not optimal under unit propagation.

The results show that in general the CNF encoding with unit propagation prop-

agates well. It determines > 80% of the assignments compared to our propagators.

Using unit propagation to obtain a 6-bit optimal propagator for multiplication

ran 180 times slower than without (Table 4.3c), but discovered 30% more assign-

ments. However, at 95% there was a large cost, taking 30 times longer than without
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Operation 5%
UP time prop. time UP bits prop. bits %

signed greater than equals 0.10s 0.07s 202 260 77%
unsigned less than 0.14s 0.06s 172 243 70%
equals 0.06s 0.03s 7310 7310 100%
bit-vector xor 0.11s 0.11s 45700 45700 100%
bit-vector or 0.14s 0.14s 464102 464102 100%
bit-vector and 0.20s 0.11s 463171 463171 100%
right shift 0.41s 0.98s 4713026 4715109 99%
left shift 0.47s 0.78s 4716925 4718901 99%
arithmetic shift 0.49s 1.68s 4566641 4591888 99%
addition 0.16s 0.12s 875 1029 85%
multiplication 1.49s 0.33s 7805 7816 99%
multiplication (max n = 6) 3.90s 20.54s 7794 7815 99%
unsigned division 15.70s 3.63s 3034619 3038246 99%
unsigned remainder 15.16s 28.05s 1071 9213 11%
signed division 1.27s 18.55s 34820 1264498 2%
signed remainder 1.71s 121.96s 276 7407 3%

Table 4.3b: Comparison of unit propagation and bit-blasting at 5%. 100000 iterations
at 64 bits.

for little gain. More work needs to be done to understand the trade-offs. Note

that the “UP time” for both multiplication variants differs, even though the work is

the same, because the “multiplication with UP” takes more of the processor’s data

cache.

As the percentage of bits that are assigned increases, unit propagation is more

time consuming. At the 1% level, unit propagation for some operations is compara-

ble in speed to the propagators, however, at 95% the propagators are substantially

faster.

The random assignments we produced, for instance in Table 4.3c, are atypical

for the shift operations. The second operand of the random assignments at 64-

bits has a high probability of being greater than 64, making the result 0. Shifting

random assignments, over-estimates how well the shift propagators will work on

real problems.

The shift operations run faster as the number of bits fixed increases (Table 4.3a–

Table 4.3d), because the more bits that are assigned, the greater the probability that

a bit is fixed that sets the result to zero. Setting the result to zero is fast to detect

and perform.
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Operation 50%
UP time prop. time UP bits prop. bits %

signed greater than equals 1.05s 0.30s 17551 22026 79%
unsigned less than 1.05s 0.23s 17577 22045 79%
equals 0.56s 0.04s 50017 50017 100%
bit-vector xor 1.09s 0.30s 2397869 2397869 100%
bit-vector or 0.92s 0.29s 2798115 2798115 100%
bit-vector and 0.78s 0.26s 2798778 2798778 100%
right shift 1.53s 0.67s 3199611 3199611 100%
left shift 1.58s 0.42s 3200933 3200933 100%
arithmetic shift 1.66s 1.26s 3249594 3249594 100%
addition 1.82s 0.29s 1137672 1689706 67%
multiplication 20.45s 1.47s 148531 162680 91%
multiplication (max n = 6) 47.03s 240.19s 148350 197310 75%
unsigned division 111.80s 7.04s 3041509 3057485 99%
unsigned remainder 120.01s 40.49s 763045 1122934 67%
signed division 59.78s 29.82s 1198292 3053684 39%
signed remainder 58.61s 136.00s 210381 841675 24%

Table 4.3c: Comparison of unit propagation and bit-blasting at 50%. 100000 itera-
tions at 64 bits.

The unsigned division propagator fixed 99% of the possible bits. The signed

modulus, remainder and division operations are the slowest; our implementation

of these propagators is the least refined.

The clause encoding that the SAT solver uses is incremental, in that if some

assignments change, only part of the work is redone. This contrasts to our prop-

agator which begin again whenever an assignment changes. From Table 4.3d, at

95% known values our unsigned division propagator reaches fixed point 35 times

faster than unit propagation does. So each unsigned division operation needs to

be evaluated at least 35 times with various assignments, before the advantage of

being incremental begins to outweigh the cost of having many clauses to propagate

over. Because of this, propagator based approaches will be superior to CNF based

approaches on easy problems which do not require the operation to be re-evaluated

often.

To measure what percentage of the possible assignments our propagators de-

rived,we ran theRSY algorithmon 1000 instanceswith various levels of information

known. The results are in Table 4.4a – Table 4.4c. Time is the time to call both the

propagator and RSY on the initial assignment. Initial is the number of bits initially

randomly set in the instances, this varies with the percentage of values initially
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Operation 95%
UP time prop. time UP bits prop. bits %

signed greater than equals 1.74s 0.32s 12597 13081 96%
unsigned less than 1.73s 0.26s 12554 13057 96%
equals 1.19s 0.03s 5067 5067 100%
bit-vector xor 1.34s 0.15s 866127 866127 100%
bit-vector or 1.10s 0.24s 599980 599980 100%
bit-vector and 1.17s 0.23s 599369 599369 100%
right shift 4.23s 0.55s 319839 319839 100%
left shift 4.14s 0.62s 320507 320507 100%
arithmetic shift 4.81s 1.00s 324578 324578 100%
addition 3.20s 0.26s 898103 907318 98%
multiplication 115.68s 10.46s 735701 929134 79%
multiplication (max n = 6) 150.77s 359.27s 736446 929917 79%
unsigned division 196.44s 5.83s 339424 340891 99%
unsigned remainder 205.60s 45.01s 694296 758022 91%
signed division 212.79s 14.28s 331093 346955 95%
signed remainder 218.18s 95.40s 644806 759474 84%

Table 4.3d: Comparison of unit propagation and bit-blasting at 95%. 100000 itera-
tions at 64 bits.

assigned. Prop is the final (not the additional) number of values assigned after

running our propagator. Max is the final number of values assigned after running

RSY. Found is the percentage of possible additional bits fixed by our propagator.

These tables show that no initial assignment was discovered which caused the

propagators we believe to be optimal, and the RSY algorithm to yield different

assignments.

The tables also show why custom implementations of the propagators are

necessary, versus using the RSY algorithm. For instance, 1,000 32-bit bit-vector

exclusive-or propagations at 5% information took 2.92 seconds, this contrasts to

the bit-vector exclusive-or propagatorwhich took (Table 4.3b) 0.11 seconds to prop-

agate on 100,000 64-bit assignments. That is, the custom implementation was

approximately 5,000 times faster.

As the amount of known information increased, the RSY algorithm took less

time. As the information increases, there are fewer possible assignments that the

unassigned variables can take. This reduces the number of times the RSY algorithm

needs to call the SAT solver.

To measure what percentage of the possible assignments our propagators de-

rived at low bit-widths, we compare the results of the CNF encoding, and propa-
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Operation 1%
Time Initial Prop. Max Found

signed greater than equals 2.48s 627 627 627 100%
unsigned less than 2.81s 639 639 639 100%
equals 2.05s 658 661 661 100%
bit-vector xor 3.12s 967 971 971 100%
bit-vector or 2.51s 1189 1495 1495 100%
bit-vector and 2.75s 1111 1424 1424 100%
right shift 7.18s 983 4687 4687 100%
left shift 7.08s 906 4648 4648 100%
arithmetic shift 7.37s 1027 1937 1937 100%
addition 5.77s 956 956 956 100%
multiplication 58.30s 911 922 922 100%
unsigned division 315.37s 967 3280 3285 99%
unsigned remainder 1092.83s 964 974 974 100%
signed division 159.61s 947 954 955 87%
signed remainder 313.00s 947 947 954 0%

Table 4.4a: Calculating the effect of the best propagator on 1000 32-bit operands;
1% of bits provided at random. ‘Time’ is the time to call both the propagator and
RSY. ‘Initial’ is the number of bits initially randomly set in the instances. ‘Prop’ is
the number of assignments after the propagator finished. ‘Max’ is the number of
assignments after RSY finished. ‘Found’ is the percentage of possible bits fixed by
our propagator.

gators versus the exhaustive approach (section 4.8) at small bit-widths. The results

are shown in Table 4.5. The percentage gives the percentage of initial assignments

where the exhaustive approach and the propagators or CNF respectively, did not

produce the same answer. Unlike the prior tables, this does not count the extra

assignments; if the propagators fixed 10 of 11 possible assignments then we count

this as a failure. Unlike the prior tables we also generate conflicting assignments, for

instance (1+ 0) = 0, if unit propagation does not report a conflict, or the propagator

does not report a conflict. This again is considered a failure.

Again we see the propagators we expect to be optimal have a 0% failure rate.

Unit propagation on the CNF encoding of left and right shift is not optimal in

1.8% of cases for a bit-width of 5. This shows that the random assignments we

produced for the prior tables over-estimated the power of unit propagation on the

CNF.

Interestingly, Table 4.5 shows that at 5-bits the CNF with unit propagation has

almost 4 times fewer missed assignments than our multiplication propagator. That

is, it is considerably better on the lower order bits than themultiplication propagator
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Operation 5%
Time Initial Prop. Max Found

signed greater than equals 2.51s 3231 3231 3231 100%
unsigned less than 2.50s 3240 3240 3240 100%
equals 1.90s 3219 3257 3257 100%
bit-vector xor 2.92s 4927 5003 5003 100%
bit-vector or 2.32s 5651 7147 7147 100%
bit-vector and 2.58s 5662 7192 7192 100%
right shift 5.57s 4797 19568 19568 100%
left shift 5.48s 4769 20507 20507 100%
arithmetic shift 5.91s 5223 18120 18120 100%
addition 5.49s 4836 4843 4843 100%
multiplication 67.55s 4782 4831 4831 100%
unsigned division 235.35s 4735 14182 14208 99%
unsigned remainder 908.75s 4685 4737 4759 70%
signed division 249.20s 4751 6167 6967 63%
signed remainder 576.09s 4895 4926 4971 40%

Table 4.4b: Calculating the effect of the best propagator on 1000 32-bit operands;
5% of bits provided at random.

Operation 50%
Time Initial Prop. Max Found

signed greater than equals 1.31s 32666 32773 32773 100%
unsigned less than 1.29s 32890 32981 32981 100%
equals 1.15s 32670 33152 33152 100%
bit-vector xor 1.24s 55748 59673 59673 100%
bit-vector or 1.19s 54143 62229 62229 100%
bit-vector and 1.23s 53981 61879 61879 100%
right shift 2.31s 47979 64072 64072 100%
left shift 2.34s 47955 63870 63870 100%
arithmetic shift 2.51s 48572 64493 64493 100%
addition 2.00s 53523 56292 56292 100%
multiplication 43.74s 48740 49471 50527 40%
unsigned division 52.98s 48352 62780 62864 99%
unsigned remainder 58.35s 50631 53064 56059 44%
signed division 80.45s 48597 62480 62656 98%
signed remainder 105.47s 50336 52402 55361 41%

Table 4.4c: Calculating the effect of the best propagator on 1000 32-bit operands;
50% of bits provided at random.

that we have described. Given the smaller number of missed assignments, this

might a better basis for the approach we described (section 4.9) for building an

optimal multiplication propagator.
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Table 4.5 shows that unit propagation applied to STP2’s 2-bit addition CNF is

not maximally precise. After unit propagation, there are 16 assignments which

are not maximally precise. These assignments, excluding those equivalent via

commutativity, are:

(〈0⋆〉 + 〈0⋆〉) = 〈00〉

(〈0⋆〉 + 〈⋆⋆〉) = 〈01〉

(〈0⋆〉 + 〈0⋆〉) = 〈⋆1〉

(〈0⋆〉 + 〈⋆⋆〉) = 〈11〉

(〈0⋆〉 + 〈1⋆〉) = 〈⋆1〉

(〈0⋆〉 + 〈1⋆〉) = 〈10〉

(〈⋆⋆〉 + 〈1⋆〉) = 〈01〉

(〈1⋆〉 + 〈0⋆〉) = 〈⋆1〉

(〈1⋆〉 + 〈0⋆〉) = 〈10〉

(〈1⋆〉 + 〈1⋆〉) = 〈00〉

(〈⋆⋆〉 + 〈1⋆〉) = 〈11〉

(〈1⋆〉 + 〈1⋆〉) = 〈⋆1〉

In each of the assignments above, the carry is known and can be used to deduce

additional bits. Note, these assignments are particular to STP2. For instance,

Minisat+ [ES06] creates a CNF for addition operations which is maximally precise

under unit propagation.

4.11 Related Work

Automatically generating propagators avoids the effort of building efficient propa-

gators. It is practical to automatically generate propagators for simple operations,

in particular the bit-wise operations (e.g. bit-vector exclusive-or, or bit-vector and).

However, the propagators for more complex operations like multiplication and

division that are automatically derived are currently too slow to be useful.
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Operation 1 bits 2 bits 3 bits 4 bits 5 bits

Prop BB Prop BB Prop BB Prop BB Prop BB

unsigned less than 0.0 0.0 0.0 1.2 0.0 3.4 0.0 5.4 0.0 6.7
equals 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

bit-vector xor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bit-vector or 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bit-vector and 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
right shift 0.0 0.0 0.0 1.1 0.0 2.0 0.0 2.1 0.0 1.8
left shift 0.0 0.0 0.0 1.1 0.0 2.0 0.0 2.1 0.0 1.8
addition 0.0 0.0 0.0 2.2 0.0 5.2 0.0 7.9 0.0 10.0

subtraction 0.0 0.0 0.0 2.2 0.0 5.2 0.0 7.9 0.0 10.0
multiplication 0.0 0.0 0.1 0.4 3.3 1.0 7.0 1.9 11.1 2.8

unsigned division 40.7 0.0 22.1 1.5 13.8 3.8 10.3 3.8 8.2 4.0
unsigned remainder 22.2 7.4 28.8 16.5 27.7 20.3 25.3 23.4 23.5 25.3

Table 4.5: Percentage of all the possible initial assignments at different bit-widths,
where the CNF encoding with unit propagation, or our propagators either, missed
at least one possible assignment, or missed a conflicting assignment.

Regehr and Duongsaa [RD06] automatically derive propagators for bit-vector

operations on 3. The propagators transfer information from operands to results

and not vice-versa. Their automatically generated bit-vector xor propagator per-

forms 875,000 32-bit operations per second. However, the multiplication propaga-

tor performs only 400 32-bit operations per second. We follow them in testing our

propagators by exhaustively taking the join of concrete elements. Regehr and Reid

[RR04] also automatically derived 3 propagators, but for small bit-widths.

Bardin et al. [BHP10], describe a bit-vector solver with propagators for 3 (which

they call the BitList domain). If we combined the ability to search and backtrack

with the 3 propagators that we describe, it would also be a decision procedure. For

arithmetic constraints they focus on cheap and correct propagators, as distinct from

our work which focuses on precise propagators.

Michel and Van Hentenryck [MV12] give maximally precise propagators for

an equivalent domain to 3. They give algorithms for the bitwise operations, the

comparisons, shifting and addition. They focus on bit-vectors which are shorter

than the machine’s bit-width, so can efficiently be implemented using data parallel

machine instructions. They do not investigate multiplication and allied operations,

or give experimental results.
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Naveh et al. [NRJ+07] combine several domains including 3, which they call

“set of masks”, in a constraint propagation solver. Their paper gives only high level

information about the propagators used.

Achterberg [Ach07] uses exclusive-or normal form to propagate both ways (be-

tween the operands and result) of bit-wise multiplication. Because a representation

in exclusive-or normal form can grow exponentially large, a limit is placed on the

size of formulae. This is an alternative approach to our work in section 4.9 for

setting the least significant ⋆ bits involved in a multiplication.

Budiu et al.[BSWG00, BG00] use bit propagation, propagating from operands

to result, to reduce the size of circuits generated by a compiler for reconfigurable

hardware. The technical report gives pseudo-code for the propagators, which

propagate other information, but not bit propagation information, from result to

operands.

Strided intervals limit the values between the upper and lower bound to also

have a fixed number of trailing bits set to zero. Balakrishnan [Bal07] describes

strided-interval propagators for some bit-vector operations. Like a bitwise analysis,

strided intervals can determine that all the trailing bits are zero.

Jung et al. [JBKW08] convert a type of graph that subsumes BDDs, to maximally

preciseCNF clauses. This is an alternate approach for achieving amaximally precise

CNF encoding of operations like addition.

4.12 Conclusion

We described a theory-level analysis to determine the assignment some variables

must take. We focused on building precise propagators, in particular we described

the implementation of the equality, addition, multiplication and unsigned division

propagators.

Our results show that our propagators can propagate information that unit

propagation over the CNF does not. Using the propagators resulted in about 10%

fewer failures on the test problems we chose. This shows that useful information

is “lost in translation” to CNF. Reasoning at the theory-level may avoid the need

to encode some operations to CNF, which for large bit-widths may overwhelm the

SAT solver.
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Using RSY to produce the effect of propagators allowed us to measure whether

bit propagation simplified problems before investing the effort to build efficient

implementations of the propagators. We believe this is an under-appreciated ad-

vantage of RSY. By solving a problem with bit propagation, using RSY, and then

subtracting the time spent in RSY, we measured the maximum possible speed up

from applying bit propagation, assuming propagators took zero time. By com-

paring this to the time taken to solve the problem without bit propagation, the

maximum possible speedup can be measured.

The difficulty in applying RSY is that our implementation is slow for some

operations. Table 4.4a – Table 4.4c shows the time taken to use RSY on 32-bit values,

compared to the results in Table 4.3a – Table 4.3d. For instance, our implementation

of RSY propagates arithmetic left shift more than 180 times slower than our hand

crafted shift propagator.

The C++ source code for our implementation is included in the publicly avail-

able STP source code repository.

After analysis, some rewrites may be possible. For example, given (t0 ≥s t1),

where the top bit of both t0 and t1 is fixed, the signed comparison can be replaced

by a cheaper unsigned comparison. We do not perform such strength reductions.

Adding redundant clauses to improve unit propagation on CNF encodings is

possible; Eén and Sörensson [ES06] use redundant clauses to improve unit propa-

gation of their bit-vector addition encoding. The CNF encoding of some operations

could be improved by such clauses. The most promising being addition, which

has a simple, repeating structure. If extra redundant clauses were added, then unit

propagation on the CNF would improve, reducing an advantage of the propagator

based approach. Unfortunately, adding such redundant clauses into the bit-blasted

(section 3.8) AIG representation can be difficult. The AIGs are good at eliminating

such redundancy.

The preference for propagators built for constraint solving is for them to be

cheap and correct, rather than precise. Because in bit propagation the propagators

are only run twice to global fixed point, we knew that the extra runtime cost

of precise propagators was not onerous. However, we believe it is not widely

appreciated how straightforward it is to measure a propagator’s precision for small

domain sizes, as we have done. Unless optimal propagators are first built, then
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measured, it cannot be conclusively decided whether or not the extra time spent

ensuring maximal precision is justified.

In this chapter we showed that:

• applying bit propagation as a pre-processor speedsup solving bit-vector prob-

lems;

• building optimal 3 propagators for many operations is practical; and

• measuring the precision of propagators on small domain sizes is a good way

to test that they are precise.

Propagators are promising for bit-vector solving because they can express the

same logic more compactly than is possible in CNF. In particular, improving the

amount of propagation of CNF based representations might require impractically

many redundant clauses to be added. Propagators consume less memory because

their reasoning does not need to be entirely statically expressed in CNF.
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5
Building a Better Array Solver

I
N the previous chapters, we described how to build a better bit-vector solver.

In this chapter we describe how to build a better array solver. STP2 is an

open-source solver for a fragment (without array extensionality) of the QF ABV

language, a combined quantifier-free theory of bit-vectors and arrays with exten-

sionality.

Efficiently solving array problems is important for software verification. STP2

did not compete in the QF ABV division of the SMT-COMP 2011 because it does not

implement array extensionality, but it is competitive for QF ABV problems without

extensionality (see subsection 5.6.2).

In this chapter we compare approaches to enforcing the function congruence

constraint (FCC). The FCC ensures that a relation is in fact a function, that is,

∀(i, j) : (i = j) =⇒ ( f (i) = f ( j))

We consider the FCC just for unary functions. An instance of the FCC enforces the

FCC for two particular applications of the same function. Because STP2 does not

handle quantifiers, the FCC is instantiated for each pair of function applications. If

there are l applications of function f , then in the worst case the FCC is instantiated

for each distinct pair of function applications, that is,
l(l−1)
2 times. We refer to the ex-

haustive approach of asserting all O(l2) of these FCC instances as Ackermannization

(Ack) ([Ack54] cited by [dMB08a]).

To avoid necessarily asserting quadratically many FCC instances via Ack, we

use the counter-example guided abstraction-refinement approach popularised by Clarke
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et al. [CGJ+00], we refer to the approach as Absre f . Absre f omits the FCC when

the problem is initially asserted to the SAT solver. If the SAT solver returns a

candidate model, then, and only then, outside the SAT solver, is the FCC checked.

If unsatisfiedFCC instances exist, then they are asserted to theSATsolver,otherwise

the problem is satisfiable and work stops. Iterating between checking the FCC and

SAT solving continues until either the SAT solver generates a model that satisfies

the FCC (even though all the FCC instances might not be asserted), or until the

SAT solver establishes that the problem is unsatisfiable. Leaving out the FCC is

abstraction, checking the FCC and iteratively adding in unsatisfied FCC instances

is refinement. The problem is initially under-constrained, then iteratively refined

until, in the worst case, it is equisatisfiable with the result ofAck.

Another approach, that we refer to as Delayed Congruence Instantiation (DCI)

builds the ability to generate FCC instances into the SAT solver. This approach

avoids the expense of the Absre f refinement loop, because enforcing the FCC is

performed inside the SAT solver. It is tailored to assert instances of theFCC close to

when they have an effect. There is no widely used name for this type of approach,

we were introduced to it as “Lazy Clause Generation” [OSC09]. We give the details

of our implementation in section 5.5. In short, whenever the SAT solver makes

completely the same assignment to the operands of two function applications, an

instance of the FCC for those two function applications is asserted without leaving

the SAT solver.

We operate on first-order quantifier-free formulae with single-dimensional bit-

vector arrays without extensionality. Both the indices and the values stored in the

arrays are fixed-width bit-vectors, that is, they have finite width. It is not possible

to use either arrays or propositions as indices or values. An array is a total function

from bit-vectors to bit-vectors of a potentially different bit-width.

Let a be a variable ranging over arrays. We use the bit-widths of arrays as

superscripts on the variables name, for instance a[2:3]
ℓ

maps from four 2-bit vectors

to 3-bit vectors. In general, we do not distinguish between array literals, and array

terms. When it is necessary, we mark array literals with a subscript ℓ, for example

aℓ. The functions added for the array theory are:

• Select returns the bit-vector stored at an index; that is, select(a[n:m], t[n]) returns

the value from a[n:m] at index t[n].
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• Store non-destructively creates a new array that replaces the value at an index;

store(a[n:m], t[n]
0
, t[m]

1
) creates a new array the same as a[n:m] except that at index

t[n]
0

the value t[m]
1

is stored.

More formally the axiom introduced is:

∀(a, i, j, e)(select(store(a, i, e), j) = ite(i = j, e, select(a, j))) (5.1)

This is the “forwarding property” of hardware verification research: that a

select returns the value most recently stored at an index.

• An array if-then-else (ITE) ite(p, a[n:m]
0
, a[n:m]

1
) returns a[n:m]

0
if p is 1, and a[n:m]

1

otherwise.

Select is sometimes called “read”, and store is sometimes called “write”. Store

and array-ITE can be used to create nested array terms.

The QF ABV theory also includes the extensionality axiom, which states that two

arrays are equal if they hold the same value at each index:

(a[n:m]
0
= a[n:m]

1
)⇔ ∀(i)(select(a[n:m]

0
, i) = select(a[n:m]

1
, i)) (5.2)

However, we do not allow equality or disequality to be applied to terms of array

type. Some array problems with extensionality can be rewritten to equisatisfiable

array problems without extensionality by using:

(a[n:m]
0
, a[n:m]

1
) =⇒ ∃(i)(select(a[n:m]

0
, i) , select(a[n:m]

1
, i))

Software verification problems often model memory as a single array with 232

or 264 possible indices. So, to be practical, a solver must use memory or time which

is sub-linear in the number of possible indices.

We use three phases to solve combined bit-vector and array problems. First, the

array part of the problem is simplified by applying rewrite rules. Second, array-ITE

and store expressions are removed. Third, the FCC instances corresponding to

the remaining select expressions are instantiated by one of three approaches to be

discussed below.
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Of the three approaches, theAck approach that we present is well known. The

Absre f approach that we describe was implemented in STP 0.1; we provide a more

complete description of the algorithm than has previously been published, but we

did not develop the approach. TheDCI approach that we present is novel.

5.1 Simplifying

STP2 applies the following rewrite rules to simplify expressions containing arrays.

These simplifications are applied when expressions are created, what we call at

creation-time (section 3.3). The variables below are typed term variables which

match arbitrary expressions, so that distinct variable names can match distinct

syntactic expressions. p is an arbitrary expression of propositional type:

ite(1, a[n:m]
0
, a[n:m]

1
) ⊲ a[n:m]

0

ite(0, a[n:m]
0
, a[n:m]

1
) ⊲ a[n:m]

1

ite(p, a[n:m]
0
, a[n:m]

0
) ⊲ a[n:m]

0

ite(p, a[n:m]
0
, ite(p, a[n:m]

1
, a[n:m]

2
)) ⊲ ite(p, a[n:m]

0
, a[n:m]

2
)

ite(p, ite(p, a[n:m]
0
, a[n:m]

1
), a[n:m]

2
) ⊲ ite(p, a[n:m]

0
, a[n:m]

2
)

ite(not(p), a[n:m]
0
, a[n:m]

1
) ⊲ ite(p, a[n:m]

1
, a[n:m]

0
)

store(store(a[n:m]
0
, i[n], j[m]), i[n], k[m]) ⊲ store(a[n:m]

0
, i[n], k[m])

store(a[n:m]
0
, t[n]

0
, select(a[n:m]

0
, t[n]

0
)) ⊲ a[n:m]

0

select(store(a[n:m]
0
, t[n]

0
, t[m]

1
), t[n]

0
) ⊲ t[m]

1

select(store(a[n:m]
0
, t[n]

0
, t[m]

1
), t[n]

2
) ⊲ select(a[n:m]

0
, t[n]

2
),

when t[n]
0
= t[n]

2
is equivalent to 0

The last rule is themost complicated. It is a conditional rewrite that checks if the

index of a select and the index of a storemust be different; if so the store is discarded.

This rule applies often, especially when the indices of the select and the store are

different constants.
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Even for an expressionwith sharing, these rules do not increase the total number

of expressions. They are what we call sharing-aware (section 2.7). If there are

already l distinct expressions, after applying these rewrite rules there will be l or

fewer expressions.

STP2 also replaces select expressions with both a constant index and a constant

result through out the problem. So if select(aℓ , c0) = c1 is conjoined with the root

node, and c0 and c1 are both constants, then select(aℓ , c0) is replaced by c1 throughout

the problem.

5.2 Removing Store and Array-ITEs

Without extensionality, it is straightforward to remove select and array-ITE terms by

repeatedly applying Equation 5.3 andEquation 5.4 below to afixedpoint. Applying

these rewrite rules generates equivalent expressions that contain the array theory

axiom (Equation 5.1). After applying these rules the only array terms remaining

are select terms. This considerably simplifies the later algorithms; the select terms

require just the FCC to be enforced between them. Applying the equations gives

a reduction from the theory of arrays to the theory of uninterpreted functions.

Later, when converting to CNF, we further reduce from the theory of uninterpreted

functions and bit-vectors to propositional logic.

ITE-lifting removes array-ITEs by converting them to term-ITEs:

select(ite(p, a[n:m]
0
, a[n:m]

1
), t[n]) ⊲ ite(p, select(a[n:m]

0
, t[n]), select(a[n:m]

1
, t[n])) (5.3)

Select-over-store elimination, which is Equation 5.1 expressed as a rewrite rule,

removes the store function:

select(store(a[n:m] , t[n]
0
, t[m]

2
), t[n]

1
) ⊲ ite(t[n]

0
= t[n]

1
, t[m]

2
, select(a[n:m], t[n]

1
)) (5.4)

A disadvantage of this approach is that, in the worst case, it will introduce

a quadratic number of extra expressions. Each application of Equation 5.4 may

create a new, unique, term-ITE. Given an expression with sharing, several select

expressions can reference either the same ITE or store term. So, when Equation 5.4

is applied it will create a distinct equality term between the read index of the select
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CHAPTER 5. BUILDING A BETTER ARRAY SOLVER

term and write index of the store term. Roughly, given l select terms that share a

reference to a chain of m store terms, after applying Equation 5.4 to a fixed point,

l × m ITE expressions are introduced. We investigate this quadratic blow-up in

subsection 5.6.4.

Applying Equation 5.3 to shared expressions has exponential time complexity

if caching is not performed. The number of paths through array-ITEs can grow

exponentially in the worst case.

Example 5.1

As an example of theworst-case behaviour, consider the following conjuncts, where

S0 is the root node, and S1 to S4 are syntactic variables:

S0 = ite(p0, S1, S2)

S1 = ite(p1, S2, S3)

S2 = ite(p2, S3, S4)

S3 = ite(p3, S4, a
[n:m]
0

)

S4 = ite(p4, a
[n:m]
0
, a[n:m]

1
)

There are 8 distinct paths to reach a[n:m]
0

. If the same structure is extended to Sk,

then the number of distinct paths to reach a[n:m]
0

equals the kth Fibonacci number. �

Our implementation performs caching to avoid repeated rewrites of the same

expression. If an array-ITE has l select expressions as ancestors, then the array-ITE

will be rewritten by Equation 5.3 at most l times.

In theworst case, the total number of applications ofEquation 5.3 andEquation 5.4

is quadratic. It is bounded by the total number of select expressions multiplied by

the total number of expressions.

Example 5.2

Applying Equation 5.3 to the expression:

select(ite(b0 , ite(b1, a0, a1), a1), t)

gives:

124



5.3. ELIMINATING SELECTS : ACKERMANNIZATION

ite(b0, ite(b1, select(a0, t), select(a1, t)), select(a1, t))

The initial expressionhas two references to the shared array-term a1. Note, likewise,

the rewritten expression has two references to the term select(a1, t). The result of

applying Equation 5.3 has similar sharing to the initial expression. �

5.3 Eliminating selects: Ackermannization

In this section we describe two implementations of Ack. Before applying Ack,

the array-ITEs and stores are removed, as described in the previous section. Ack

eliminates select terms by instantiating the FCC, that is it reduces to the theory of

uninterpreted functions by writing the FCC into the problem.

If there are l selects with syntactically distinct index terms t[n]
0
. . . t[n]

l−1
from array

a[n:m]
ℓ

, thenAck creates all
l(l−1)
2 FCC instances:

∀0≤ j<k<l((t
[n]
j
= t[n]

k
) =⇒ (select(a[n:m]

ℓ
, t[n]

j
) = select(a[n:m]

ℓ
, t[n]

k
)))

Example 5.3

If an expression contains 5 select expressions accessing array a0, and 10 select expres-

sions accessing array a1, then as many as
5(5−1)

2 +
10(10−1)

2 = 55 FCC instances are

asserted. �

The first implementation that we present, which we callAckcn f , asserts theFCC

directly to the SAT solver (Algorithm 5.1). Ackcn f creates theFCC instances directly

as CNF, bypassing the expensive bit-blasting andAIG to CNF encoding steps. Note

that line 3 traverses the select terms after they have been topologically sorted, so the

index of the select contains no select terms.

We use the FCC instance CNF representation introduced by Biere and Brum-

mayer [BB08a]. The representationwas described in more detail in Section 2.11.6 of

Robert Brummayer’s PhD thesis [Bru09]. Algorithm 5.2 shows how to generate the

CNF. For two selects of index bit-width n and result bit-widthm, the algorithm adds

1+ 2n+ 2m clauses and creates n+ 1 fresh variables. Note that the clauses allow e to
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Algorithm 5.1 Ackcn f removes select terms by asserting FCC instances directly to
the SAT solver. The subterms method returns a list of e’s subterms topologically
sorted.
Require: e a formula
1: Create selects, a set of tuples of an array literal, an index, and a result
2: selects← {}
3: for all select(a, i) ∈ subterms(e) do // in topological order
4: Replace select(a, i) in e by a fresh variable v
5: Add 〈a, i, v〉 to selects
6: end for

7: Assert e to the SAT solver // All select terms have been removed from e
8: for all distinct array literals a ∈ selects do
9: Create pairs, a list of 〈index, result〉 pairs

10: pairs← selects[a] // Get all the selects of array a
11: for all j from (1 . . . (size(pairs) − 1)) do
12: for all k from (0 . . . ( j − 1)) do
13: if (pairs[ j].index = pairs[k].index) does not equal 0 after bit-vector

theory-level simplifications then
14: FCC instance(pairs[ j], pairs[k]) // Algorithm 5.2
15: end if
16: end for

17: end for

18: end for

Algorithm 5.2 Creating FCC instances in CNF, after Biere and Brummayer [BB08a,
Bru09].

Require: i[n]
0
,w[m]

0
// The index and result corresponding to a select

Require: i[n]
1
,w[m]

1
// The index and result corresponding to another select

1: procedure FCC Instance((i0,w0), (i1,w1))
2: Create the fresh variables v0 . . . vn−1, e
3: for all i from 0 . . . (n − 1) do
4: Output (i0[i] ∧ i1[i]) =⇒ vi
5: Output (¬i0[i] ∧ ¬i1[i]) =⇒ vi
6: end for

7: Output (v0 ∧ . . . ∧ vn−1) =⇒ e // Note: µ(e) is 1 when µ(i0) = µ(i1)
8: for all i from 0 . . . (m − 1) do
9: Output (e ∧ w0[i]) =⇒ w1[i]

10: Output (e ∧ w1[i]) =⇒ w0[i]
11: end for

12: end procedure

be 1 when the indices are different. We have use the implication connective ( =⇒ )

for readability: note that all formulae output are disjunctions of literals.
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Example 5.4

Consider applying Algorithm 5.2 to assert an FCC instance for select(a[2:3] , t0), and

select(a[2:3] , t1), where the selects have been replaced by fresh variables w0,w1 respec-

tively. Clauses are asserted to express that the indices’ bits are pairwise equal. That

is, these clauses are asserted:

(t0[0] ∧ t1[0]) =⇒ v0

(¬t0[0] ∧ ¬t1[0]) =⇒ v0

(t0[1] ∧ t1[1]) =⇒ v1

(¬t0[1] ∧ ¬t1[1]) =⇒ v1

If the indices are pairwise equal then the clause (v0 ∧ v1 =⇒ e), forces e to be 1.

When e is 1, the clauses:

e ∧ w0[0] =⇒ w1[0]

e ∧ w1[0] =⇒ w0[0]

e ∧ w0[1] =⇒ w1[1]

e ∧ w1[1] =⇒ w0[1]

e ∧ w0[2] =⇒ w1[2]

e ∧ w1[2] =⇒ w0[2]

enforce that the bit-vectors w[3]
0

and w[3]
1

are the same bitwise. �

Example 5.5

Consider some expression that contains three select sub-expressions: select(a, 5),

select(b, t0), and select(a, select(b, t0)).

Ackcn f (Algorithm 5.1) replaces select(a, 5) by v0, select(b, t0) by v1, and select(a, v1)

by v2. Because there is a single select from b, no FCC instances are needed. The

FCC instance for a is: (5 = v1) =⇒ (v0 = v2), which is encodedviaAlgorithm 5.2. �
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The Ackcn f implementation creates a bit-vector equality between index terms

(Algorithm 5.1 line 13), then simplifies it. The simplifications are simple rewrite

rules that may simplify the equality to 0. If two indices are definitely not equal (the

equality simplifies to 0), then no FCC instance is asserted. This omits the FCC

instance in cases where indices are obviously not equal, for instance: (t + 4 = t),

(8 = 10), and ((1[1] :: t) = (0[1] :: t)). We assume a DAG expression as input, so the

Ack algorithms have no need to optimise for encountering syntactically identical

select terms.

Analternativemethod isAckite. It encodes theFCC as bit-vector termsusing ITE

expressions. It is given in Algorithm 5.3, and is identical to theAck implementation

of STP 0.1. The same method was also presented by Manolios et al. [MSV06]. The

effect of Ackite is to remove array terms entirely from the problem, reducing the

problem to a bit-vector problem.

Algorithm 5.3Ackite which removes select terms by replacing themwith term-ITEs.

Require: e, a formula
1: Create pairs, a map from array literals to lists of pairs of bit-vector indices and

results
2: pairs← {}
3: for all select(a, i) ∈ subterms(e) do // in topological order
4: Create t, an expression
5: t← a fresh variable v
6: for all j from (0 . . . (size(pairs[a]) − 1)) do
7: t← ITE(i = pairs[a][ j].index, pairs[a][ j].result, t)
8: end for

9: Replace select(a, i) in e by t
10: Add the pair (i, v) to the front of the list pairs[a]
11: end for

12: Output e

Example 5.6

Consider applying Ackite (Algorithm 5.3), given the selects: select(a, s), select(a, t),

and select(a, u). The first select is replaced by a fresh variable v0, the second select is

replaced by ite(t = s, v0, v1), and the third select is replaced by ite(u = s, v0, ite(u =

t, v1, v2)). Note thatAckite must generate the term-ITE in a particular order; replac-

ing select(a, u) with ite(u = t, v1, ite(u = s, v0, v2)) would be incorrect. �

128



5.4. ELIMINATING SELECTS : ABSTRACTION-REFINEMENT

Amajor advantage ofAck is simplicity—it generates a singleCNF representation

of the problem. Because the SAT solver’s programmatic interface is not needed, it

is easy to change between SAT solvers. A consequence is that it is easy to upgrade

to whichever is the best sequential or parallel SAT solver. Another advantage is

that global AIG or CNF simplifications can be applied to the CNF. The next two

approaches we investigate interface more closely with the SAT solver.

5.4 Eliminating selects: Abstraction-Refinement

Software verification problems may have a thousand or more selects from an array.

With Ack this necessitates the inclusion of about five hundred thousand FCC

instances. However, some FCC instances are unnecessary if:

• they constrain indices that because of other constraints can never be equal,

• they constrain results that because of other constraints can never be different,

or,

• the satisfiability of the problem does not depend on the FCC, for instance, if

the bit-vector part of the problem alone is unsatisfiable.

Absre f overcomes the main problem ofAck—that all the instances of the FCC

are always sent to the SAT solver—by adding FCC instances as needed. In the

worst case, all the FCC instances are asserted, soAbsre f produces a formula equi-

satisfiable with that fromAck. In the best case, when the satisfiability is determined

just by the bit-vector part of the problem, no FCC instances are asserted.

Absre f asserts an over-approximation of the problem to the SAT solver, then

uses the SAT solver’s models to determine which FCC instances to assert. Initially

Absre f omits the FCC. It lets the SAT solver generate a candidate model, and

then checks whether that model satisfies the FCC. FCC instances that are violated

are asserted to the SAT solver. If the resulting formula is unsatisfiable, then work

has finished. However, if it is satisfiable, the omitted FCC instances are checked,

unsatisfied instances are asserted, and the SAT solver restarted. Because the SAT

solver is solving an increasingly more constrained problem, an important practical

consideration is thatmuch of the SAT solver’s state can be kept between invocations.
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In theworst case, if a singleFCC instance is asserted in each refinement iteration,

there will be quadratically many iterations. Each refinement step calls the SAT

solver, which has a startup cost. To reduce the worst case, FCC instances can be

asserted even if they currently evaluate to 1. TheAbsre f algorithm (Algorithm 5.4)

of STP has no more refinement iterations than there are distinct select expressions.

The Absre f algorithm of STP2 differs from that of STP 0.1 in that, like Ackcn f , it

assertsFCC instances as CNF usingAlgorithm 5.2. So themajority of the treatment

in Vijay Ganesh’s PhD thesis [Gan07] Section 4.5 is still accurate.

Example 5.7

If one array literal appears in 30 selects, and the other in 100 selects, then there will be

at most 130 refinement iterations. However, if instead FCC instances were added

singly, there are 100×99
2 + 30×29

2 = 5385 possible refinement iterations. �

Implementations of Absre f make a trade-off between calling the SAT solver

many times and assertingmany unnecessaryFCC instances, that is, betweenassert-

ing unnecessary clauses likeAck does, and risking quadratically many refinement

iterations if single unsatisfied FCC instances are asserted. Because STP2 asserts

extraFCC instances, for some problems in our suite (see subsection 5.6.3) it is more

than two thousand times faster than Boolector, anotherAbsre f based solver. How-

ever, the risk is that the redundant FCC instances increase the memory required

and slow down SAT solving.

It is common in software verification problems for the values at some indices to

be specified. The CNF encoding of an equality between a constant and a variable is

smaller than the encoding between two variables. TheAbsre f implementation sorts

the list of selects so that constant indices are checked first. Sorting the indices does

not matter to theAck approach because the same number of FCC instances will be

asserted regardless of sorting. By sorting the list of selects we hope for Absre f to

assert fewer CNF clauses overall.

Example 5.8

Consider applying Algorithm 5.4 to the expression ((select(a, 5) = select(a, t0)) ∧

(select(a, t1) = t2)).
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Algorithm 5.4 STP2’s algorithm forAbsre f

Require: e, a formula
1: Create original
2: original← e
3: Create pairs, a map from array literals to lists of pairs of bit-vector indices and

results
4: pairs← {}
5: for all select(a, i) ∈ subterms(e) do // in topological order
6: Replace select(a, i) in e by a fresh variable v
7: Add the pair (i, v) to the list pairs[a]
8: end for

9: Assert e to the SAT solver
10: if SAT solve() is unsatisfiable then
11: return unsatisfiable
12: end if

13: Create: next, later, lists of CNF clauses
14: for all distinct array literals a encountered do

15: Sort the indices in pairs[a], so that constant indices are first.
16: for all j from (0 . . . (size(pairs[a]) − 1)) do
17: for all k from ( j + 1 . . . (size(pairs[a] − 1))) do
18: if (µ(pairs[a][ j].index) = µ(pairs[a][k].index)) ∧(µ(pairs[a][ j].result) ,
µ(pairs[a][k].result)) then

19: next.push(FCC instance(pairs[a][ j], pairs[a][k]))
20: else

21: later.push(FCC instance(pairs[a][ j], pairs[a][k]))
22: end if

23: end for

24: if size(next) > 0 then

25: Assert next to the SAT solver
26: Empty next
27: if SAT solve() is unsatisfiable then
28: return unsatisfiable
29: else if µ(original) = 1 then
30: return satisfiable
31: end if

32: end if

33: end for

34: end for

35: if size(later) > 0 then

36: Assert later // Equisatisfiable toAck.
37: return SAT solve()
38: end if

Each select expression is replaced by a fresh variable, giving (v0 = v1)∧ (v2 = t2),

which is asserted to the SAT solver. The original formula will be evaluated with the

assignment from the SAT solver.
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Consider a model: µ(v0) = µ(v1) = 5, µ(v2) = µ(t2) = 6, µ(t0) = µ(t1) = 2. The

original formula is evaluatedwith this assignment. To ensure that theFCC applies,

the result at every index is keptwhen it is encountered. Because v0 is 5, select(a, 5) = 5

is stored. Because t0 is 2, select(a, 2) = 5. Now v2 = 6, and t1 = 2, but select(a, 2) has

already been set to 5, so the prior value is used. The original formula evaluates to

(5 = 5) ∧ (5 = 6), which is 0.

Refinement is now applied to each distinct pair of select indices. We have

(5 , µ(t0)), so the instance ((5 = t0) =⇒ (v0 = v1)) is stored. Similarly, (5 , µ(t1)),

so the instance ((5 = t1) =⇒ (v0 = v2)) is stored. (µ(t0) = µ(t1)) ∧ (µ(v1) , µ(v2)), so

the FCC instance ((t0 = t1) =⇒ (v1 = v2)) is asserted.

The SAT solver is called, and the process of checking the model and asserting

extra FCC instances iterates. �

Thenumber of clauses that are asserted for anFCC instancedepends onwhether

any values are known. If an index is a constant, then fewer clauses are asserted by

variants of Algorithm 5.2.

Example 5.9

The FCC instance (2 = i[n]) =⇒ (w[m] = 0) can be encoded as (¬i[n− 1]∧ . . .∧ i[1]∧

¬i[0]) =⇒ e, and ∀m−1
k=0

(e =⇒ ¬wk). This encoding has m + 1 clauses and 1 fresh

variable, versus the 1+2n+2m clauses and n+1 fresh variables in all variables case. �

If the result at each possible index is known, and there are other select expres-

sions. Then it is not necessary to create FCC instances for every distinct pair of

selects. The next example shows an instance this occurring. Of the approaches we

discuss, the DCI approach is the best at avoiding generation of unnecessary FCC

instances.

Example 5.10

Consider a problem where: ∀0≤i<16(select(a
[4:5], i) = i), select(a[4:5] , t[4]

0
) = t[5]

1
, and

select(a[4:5], t[4]
2
) = t[5]

3
. The constant indices specify the array’s value entirely, so

there is no need to enforce FCC instances between the selects at t0 and t2; it is
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enough to assert them between each of the constant indices and t0 and t2. �

The Absre f implementation does not detect and share clauses between FCC

instances that are completely or partially identical. Of our implementations, only

Ackite will detect and share clauses between FCC instances.

Example 5.11

If (select(a0, t0) = select(a0, t1)) and (select(a1, t0) = select(a1, t1)), then two FCC in-

stances have the same left side. Assume select(a0, t0) is replaced by v0, select(a0, t1)

by v1, select(a1, t0) by v2, and select(a1, t1) by v3. Then the FCC instances are

((t0 = t1) =⇒ (v0 = v1)), and ((t0 = t1) =⇒ (v2 = v3)). The CNF conversion

algorithm (Algorithm 5.2) will create duplicate fresh variables to represent that the

indices are bitwise equal. �

Absre f as implemented by STP2 avoids adding all theFCC instances, but brings

extra problems. The SAT solver may arbitrarily set variables that violate the FCC

when they could have easily been set so that the FCC holds, requiring unnecessary

refinement iterations.

Example 5.12

Consider two selects, both of which have indices evaluating to 6, with the corre-

sponding results respectively:〈110〉 and 〈11⋆〉. Because the indices are the same,

the values must be the same. So the SAT solver must choose a 0 for the final ⋆

value. However, because some FCC instances have been omitted, it may be set to

1, requiring an extra refinement iteration. �

In STP2’s Absre f implementation, after finding a candidate SAT model, all

the assignments to SAT variables are discarded. This is the standard behaviour

of Minisat’s programmatic interface. For instance, if there are 1 million clauses,

after the refinement phase asserts extra clauses, the SAT solver finds a satisfying

assignment to these 1 million clauses. On a single core of an Intel Q8400 Linux

computer, Minisat 2.2 takes about 150ms to do so. So on such problems, STP 0.1

and STP2 is limited to about 7 refinement iterations per second.
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Other than the cost of checking theFCC andmaking extra SAT solver attempts,

Absre f risks that the over-approximated problemmight bemore expensive to solve

than the original problem.

Consider a hard bit-vector problem conjoined with an easily unsatisfiable array

problem, where the array part is: (select(a, t0) , select(a, t1)) where t0 and t1, in some

opaque manner, are equivalent but syntactically different. Because abstraction

replaces each select expression by fresh variables v0 and v1, the array part becomes

v0 , v1, which is trivially satisfiable. So the SAT solver must solve the hard bit-

vector problem before the problem can be refined. Because the array part of the

problemhas been abstracted away, andwill not be refineduntil a satisfiablemodel is

produced to the bit-vector problem, the easily unsatisfiable array part is essentially

ignored until after a satisfying assignment is found.

We could reduce the overheadper refinement iteration, by allowing clauses to be

asserted to the SAT solver during search, as we do in theDCI approach. However,

preventing the SAT solver from being forced to solve a more difficult abstracted

problem requires the SAT solver to have information about the FCC. We discuss

an approach that does this next.

5.5 Eliminating selects: Delayed Congruence Instantiation

The Delayed Congruence Instantiation (DCI) approach, as we use the term, oper-

ates inside the SAT solver. DCI asserts FCC instances incrementally, as the indices

progressively are assigned the same value. When asserting FCC instances, DCI

preserves the SAT solver’s partial assignment which our Absre f implementation

discards. Similarly to the Ack approach, the FCC is always enforced—but with-

out the requirement to add every FCC instance upfront. DCI thus attempts to

overcome the problems of Ack, which introduces FCC instances too early, and

Absre f , which introduces FCC instances too late. A disadvantage, however, is

that the implementation of DCI is intimately tied with a particular SAT solver’s

implementation.

One way to think of this approach is that the SAT solver operates on an implicit

CNF. FCC instances are instantiated only when they are likely to contribute to unit

propagation. So instead of the SAT solver using memory to store clauses which do
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Algorithm 5.5 Precursor phase to applyingDCI

Require: e, a formula
1: Create selects, a set of tuples of an array literal, an index, and a result
2: selects← {}
3: for all select(a, i) ∈ subterms(e) do // in topological order
4: Replace select(a, i) in e by a fresh variable v
5: Add 〈a, i, v〉 to the selects
6: end for

7: Assert e to the SAT solver

not participate in unit propagation, the clauses are stored compactly as lists of select

indices and results.

Another way to think of the approach is as a form of Absre f which is able to

enforce that the FCC is satisfied on partial assignments. The initial CNF asserted

to the SAT solver, and the final CNF, in the worst case are identical for DCI and

Absre f .

The precursor steps to applying DCI are given in Algorithm 5.5. First, fresh

variables replace select terms. Second, after replacing all the select terms with fresh

variables, the problem is asserted to the SAT solver. To enforce the FCC, the DCI

algorithm must know which of the SAT solver’s variables, if any, correspond to

particular indices and results. So, when the DCI algorithm is invoked, it is told

which variables in the CNF correspond to the indices and results of select terms.

Let us briefly review SAT solver terminologywhichwas introduced in chapter 2.

A SAT solver performs unit propagation, which assigns variables that are entailed by

the current assignment. SAT solvers also perform search, which heuristically selects

an unassigned variable, and assigns it a truth value. Search is performed only when

unit propagation is at a fixed point. When assignments are made, the decision level

is the number of assignments set via search. A conflict is when the assignment is

inconsistent. A cancel undoes the work performed beyond a decision level. A trail

is a list of pairs (v, ℓ), where v is a variable that has been assigned a value, and ℓ is

the decision level at which it happened.

The DCI algorithm (Algorithm 5.6) we first present is simplified to highlight

its key features. A more efficient and complete implementation is given later

(Algorithm 5.10). DCI is run alternately with unit propagation, until neither causes

any changes. Then search is performed. The DCI algorithm does not change the

assignments to variables, it simply asserts FCC instances. If the indices of two
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Algorithm 5.6 A simpleDCI algorithm. Run after unit propagation inside the SAT
solver.
Require: selects // A set of tuples of an array literal, an index, and a result
Require: knownIndices // A map from array literals to a map from integer indices

to a list of 〈index, result〉 pairs.
1: procedure DCI(selects, knownIndices)
2: for all 〈array, k, index, result〉 ∈ knownIndices do
3: if µ(index) contains a ⋆ value then
4: if knownIndices[array][k][0] = 〈index, result〉 then
5: // Instantiate the FCC between the new 0th and others
6: for all i ∈ 2 . . . (size(knownIndices[array][k]) − 1) do
7: FCC Instance(knownIndices[array][k][1], knownIndices[array][k][i])
8: end for

9: end if

10: remove 〈index, result〉 from knownIndices[array][k]
11: end if

12: end for

13: for all 〈array, index, result〉 ∈ selects do
14: if µ(index) contains no ⋆ value then
15: Create: integer k← µ(index)
16: if 〈index, result〉 < knownIndices[array][k] then
17: knownIndices[array][k].add(〈array, index, result〉)
18: if size(knownIndices[array][k]) > 1 then
19: // FCC instance between 0th and newly assigned
20: FCC Instance(knownIndices[array][k][0], 〈index, result〉)
21: end if

22: end if

23: end if

24: end for

25: end procedure

selects have the same assignment, but the results have different assignments, then

the DCI algorithm will generate a conflict. After asserting an FCC instance, unit

propagation is applied, the process repeats until neither cause a change. Then

search is performed.

DCI introduces FCC instances between indices when they first have the same

propositional assignment. For each array, it maintains a list of selects with com-

pletely specified indices, that is, the index contains no ⋆ values. When the final bit

of an index is assigned, a lookup is performed to find other indices with the same

assignment. If the index is currently the only index with that assignment, no FCC

instance is asserted. However, if other indices evaluate to the same integer with the

assignment, then an FCC instance is asserted.
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The knownIndices map of Algorithm 5.6 holds a list of pairs which have indices

that are currently assigned to the same integer. If l, where l > 1 pairs have the same

index assignment, then the algorithm instantiates l− 1 FCC instances, between the

zeroeth pair and each other pair.

Each index that is completely assigned, is stored in the knownIndices map. For

each integer value, a list of the index/result pairs where the index evaluates to that

same integer value is stored. Algorithm 5.6 maintains the invariant that for every k

there is anFCC instance assertedbetween knownIndices[k][0] and knownIndices[k][i],

such that i > 0.

An unapparent property of Algorithm 5.6 is the following: Consider the indices

stored in the list knownIndices[array][k]. The decision levels at which they became

totally assigned is monotonically increasing. Hence, when removing indices from

the knownIndices[array][k] list, it is not necessary for the procedure to consider the

impossible case when the zeroeth element of a list is removed, and other elements

remain that require FCC instances to be asserted between them.

Example 5.13

Consider three pairs i0, i1, i2 stored at knownIndices[array][k]. Two FCC instances

are asserted between these pairs when they are added to the list, that is, between

i0 and i1, and between i0 and i2. If i0 could be removed from the list, while i1

and i2 remained, then it would be necessary, when i0 was removed, to assert an

FCC instance between i1 and i2. However, because the decision level at which the

indices were fully assigned is monotonically increasing, that is, i0 has the lowest,

or the equal lowest decision level, it is not possible for i0 to be removed, while the

others remain in the list. �

The more straightforward approach is to instantiate the FCC between all the

selects when an index first become known. By asserting the FCC instances just

between the zeroeth entry and the others, we hope to sometimes avoid asserting

quadratically many FCC instances.
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Example 5.14

Suppose the array a[2:3] appears in 3 selects {〈i0, v0〉, 〈i1, v1〉, 〈i2, v2〉}. Here the is are

vectors of SAT variables corresponding to the selects’ indices, and the vs are the SAT

variables corresponding to the fresh variables that replaced the selects.

Suppose the assignment to the indices is µ(i0) = 〈1⋆〉, µ(i1) = 〈10〉, µ(i2) = 〈1⋆〉,

and assume that the SAT solver replaces the ⋆ assignment of i0 by 0. As the

assignments to the indices i1 and i0 are now equal, an FCC instance is asserted,

namely (i1 = i0) =⇒ (v1 = v0). We cannot assert that (v1 = v0) because the

assignments to i1 and i0 might be changed later.

If the ⋆ assignment of i2 is replaced by 0, then anotherFCC instance is asserted:

(i1 = i2) =⇒ (v1 = v2). Note that in this case, 3 indices have the same assignment,

and only 2 FCC instances have been asserted. �

We should say that our implementation of theDCI approach sometimes asserts

FCC instances after they would first have been useful. This is because FCC in-

stances are added only after an index is entirely known. As a result, the SAT solver

may assign literals wrongly, even when bits are deducible from the values assigned

to other indices and values. This causes the SAT solver to perform extra work. The

next example clarifies this point.

Example 5.15

Suppose the array a[3:2] appears in three selects, {〈i0, v0〉, 〈i1, v1〉, 〈i2, v2〉}, and suppose

the assignments are i0 = 〈10⋆〉, v0 = 〈0⋆〉, i1 = 〈100〉, v1 = 〈00〉, i2 = 〈101〉, and

v2 = 〈00〉. Then the ⋆ value of v0 must be 0, because if i0 is 〈100〉, it is forced to be 0,

and if i0 is 〈101〉 it is also forced to be 0. �

Our DCI implementation may also assert some FCC instances before they are

useful. As the next example shows, FCC instances can be asserted even if the

values assigned to the results of two selects are identical.
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Example 5.16

Suppose the array a[2:2] appears in two selects {〈i0, v0〉, 〈i1, v1〉}. If both results are

completely assigned, with µ(v0) = µ(v1), and µ(i0) becomes equal to µ(i1), then the

FCC instance ((i0 = i1) =⇒ (v0 = v1)) is asserted, even though it does not yet

enable unit propagation. �

TheDCI algorithm that we have presented so far is inefficient. We now describe

aversionof theDCI algorithmwhichmore closelymatches ourDCI implementation

(Algorithm 5.8 – Algorithm 5.10 ).

We give theDCI algorithm in three parts corresponding to procedures that we

built into the SAT solver in three places. The precursor procedure (Algorithm 5.8)

initialises the state that the other procedures use; it is run before SAT solving be-

gins. The second runs after the SAT solver’s cancel function, which deletes assign-

ments to variables (Algorithm 5.9). A third procedure runs after unit propagation

(Algorithm 5.10).

Algorithm 5.7 shows where theDCI procedures fits in the SAT solver.

An improvement to the simpleDCI algorithmwepresented (Algorithm 5.6) is to

use a one-watched literal scheme to determinewhen the final variable of an index is

assigned. This corresponds to line 7 in Algorithm 5.10. After unit propagation, the

list of variables that were recently assigned is iterated through. The trail is recorded

by unit propagation; it records which variables have been set. By iterating through

the trail, it is easy to check if a watched variable has been assigned. If the watched

literal has been assigned, then each of the variables of the index are checked in

turn to see if they are unassigned. If some other index variable is unassigned, then

the watchlist is updated to refer to that variable. However, if no unassigned index

variables remain, then the index is entirely assigned, so anFCC instance is asserted.

Another improvement is to record ifFCC instances have been asserted between

a pair of selects already. Before outputting FCC instances, a check is performed so

that duplicate FCC instances are not asserted.
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Algorithm 5.7 The DCI algorithm implemented with a SAT solver. Given for the
one array case.

Require: e a formula
1: Create integer decision level← 0 // the integer decision level
2: Create µ // assignments from variables to: {0, 1}
3: Create selects, a set of index/result pairs
4: selects← {}
5: for all select(a, i) ∈ subterms(e) do // in topological order
6: Replace select(a, i) in e by a fresh variable v
7: Add 〈i, v〉 to the selects
8: end for
9: Convert e to CNF and assert to the SAT Solver

10: perform precursor(selects) // Algorithm 5.8
11: while some variable is not in µ do
12: while the size of the trail changes, and no conflict do
13: Perform unit propagation
14: assert FCC( ) // Algorithm 5.10
15: end while

16: if a conflict occurred then

17: Analyse the conflict
18: Assert the conflict clause
19: if decision level = 0 then
20: return unsatisfiable
21: end if

22: Undo assignments until µ is not in conflict
23: Update the decision level
24: delete watched( ) // Algorithm 5.9
25: else

26: if some variable is not in µ then
27: Set a variable not in µ to 1 or 0
28: Increment the decision level
29: end if

30: end if

31: end while
32: return satisfiable

Example 5.17

Suppose the assignment to some index is 〈111 ⋆ ⋆〉, and that the zeroeth literal is

being watched. If, after unit propagation, the assignment becomes 〈111 ⋆ 1〉, then,

the watched literal is no longer unassigned, so an iteration through each of the

variables is performed. In this case, because the first literal is ⋆, it will become the

new watched literal. �
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Algorithm 5.8 Precursor steps for an improved DCI algorithm. Given for the one
array case.

Require: pairs, a lists of pairs of bit-vector indices and results
1: procedure perform precursor(pairs)
2: Create integer checked← 0
3: Create dci watchlist, a map from index variables to index/result pairs
4: for all 〈index, result〉 ∈ pairs do
5: dci watchlist[v].add(〈index, result〉), where v ∈ index ∧ µ(v) = ⋆
6: end for

7: Create dci trail, a list of tuples of decision level, integer assignment, index,
result variables

8: Create knownIndices, a map from integer indices to lists of index/result pairs
9: Create asserted, a set of FCC instances that have already been asserted
10: knownIndices← asserted← {}
11: end procedure

Algorithm 5.9 Steps performed after cancel for an improved DCI algorithm. Uses
the variables defined in Algorithm 5.8. Given for the one array case.

1: procedure delete watched // This runs after the cancel function
2: while size(dci trail) > 1 do
3: 〈level, k, index, result〉 ← dci trail[size(dci trail) − 1]
4: if level < decision level then
5: return

6: end if

7: // At least one index variable is now unassigned
8: Delete the last element of the dci trail list
9: Add 〈index, result〉 to the dci watchlist
10: Remove 〈index, result〉 from knownIndices[k]
11: end while

12: end procedure

To speedup removal from the knownIndicesmap,which needs to occurwhenever

a variable in an index becomes unassigned, the decision level at which an index

becameentirely assigned is stored. In the algorithmswepresent, this is the role of the

dci trail. The algorithm that runs during cancellation (backtracking) Algorithm 5.9,

uses the dci trail to efficiently remove entries from the knownIndicesmap.

An invariant of this improved version is that the decision levels at which the

indices stored in knownIndices[k] became fully assigned is monotonically increasing.

Because delete watched is performed from higher to lower decision levels, the

knownIndices[k][0] element will only be removed from the list when it is the only

element in the list. Owing to this invariant, it is not necessary for thedelete watched
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Algorithm 5.10 Steps after unit propagation for an improvedDCI algorithm. Uses
the variables defined in Algorithm 5.8. Given for the one array case.

1: procedure assert FCC // This runs after unit propagation
2: for k = checked . . . (size(trail) − 1) do
3: if dci watchlist(trail[k]) then
4: index← dci watchlist(trail[k]).index // the index variables
5: result← dci watchlist(trail[k]).result // the result variables
6: Delete trail[k] from the dci watchlist
7: if another index variable v j ∈ index is µ(v j) = ⋆ then

8: // Another variable is unassigned
9: dci watchlist.add(v j , index, result)

10: else

11: // No unassigned index variables
12: Create integer k← µ(index)
13: Add 〈index, result〉 to knownIndices[k]
14: dci trail.add(〈decision level, k, index, result〉)
15: if (size(knownIndices[k]) > 1) ∧ ((knownIndices[k][0], select) <

asserted) then

16: // Have not asserted the FCC already
17: asserted.add(knownIndices[k][0], select)
18: FCC Instance(knownIndices[k][0], select)
19: if the SAT solver is now in conflict then
20: // The indices are the same, but the results different
21: return a conflict clause
22: end if
23: end if

24: end if

25: end if

26: end for

27: end procedure

28: checked← size(trail) // Track how much of the trail is checked

procedure to consider the case when the zeroeth element of a list knownIndices[k] is

removed. The list will always be empty in that case.

When assignments are cancelled, entries are removed from the knownIndicesmap

until the decision level of the assignment equals the current decision level. When

the decision level is less than the level at which the index became entirely assigned,

then that index is no longer entirely assigned, so the entry must be removed from

the knownIndices map.
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5.6 Evaluation

Webase our evaluations on the SMT-LIB QF ABVproblems1 as at the 1st of September

2011. We removed the BrummayerBiere3 family, because they are crafted problems

that test an unconstrained array simplification which STP2 does not implement.

Next, we removed problems containing array extensionality. Finally, we removed

22 problems that use index bit-widths greater than 64-bits, which is currently a limit

of ourDCI implementation. OurDCI implementation uses nativemachine integers

rather than arbitrary precision integers to store the known indices (Algorithm 5.10).

We were left with 9796 problems.

Compared to SMT-COMP 2011, first, we do not use a problem scrambler. The

problem scrambler randomly applies simple transformations like swapping the ar-

guments to commutative operations to make cheating via pattern matching harder

in the competition. The problems are unscrambled because scrambling produces re-

sults that are harder to reproduce. Second, we are using problemswith an unknown

satisfiability status. Third, we have excluded problems with array extensionality.

Finally, we have not checked whether the satisfiability of problems depends on

the semantics of division by zero. We compared the solvers’ results for each prob-

lem. When multiple solvers answered the same problem they always had the same

answer.

In general, the problems have few selects with indices that may be equal. The

largest number of selects from a single array is 6096, but all those indices are con-

stants, meaning that no FCC instances are generated. Of problems that could be

successfully converted to CNF, the most FCC instances added byAckite was 9600.

Problems in the check family required more FCC instances, but they both exceeded

the memory limit on all solvers.

5.6.1 A Comparison of TwoAck Implementations

We compare the performance ofAckite andAckcn f combined with two SAT solvers.

An advantage of Ack is that any SAT solver that reads DIMACS CNF format can

easily be used. Minisat 2.2, the default SAT solver of STP2, placed sixteenth of the

twenty-six solvers at the 2011 SAT Competition in the Application UNSAT+SAT

1These are contained in the QF AUFBV category, which contains no problems with Uninterpreted
Functions (UF).
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Ackcn f Ackcn f+G Ackite Ackite+G

Family # time fail time fail time fail time fail

bench ab 119 0 2 1 4
brummayerbiere 56 912 27 766 25 1177 26 864 25
brummayerbiere2 22 931 1 783 566 1 480

calc2 16 639 298 614 287

check 2 0 2 0 2 0 2 0 2

dwp formula 1750 373 1 659 161 1 713
egt 7719 37 95 53 112
platania 20 217 208 230 714
stp 40 335 1 838 1 359 1 791 1
stp sample 52 2 3 2 3

Sum 9796 3447 32 3652 28 3163 31 3969 28

Time w/ penalty 19479s 17680s 18694s 17997s

Table 5.1: G is Glucose. For each family and solver: ‘time’ is the time in seconds that
solved problems took to complete; ‘fail’ is the number of problems that exceeded
the time limit or memory limit. The ‘Time w/ penalty’ is the sum of ‘time’ plus 501
seconds per failed problem. ‘#’ is the number of problems in a family.

division. We also evaluate with the first placed Glucose 2.0 [AS09] SAT solver . We

use the same Glucose configuration as was submitted to the SAT Competition; it

calls the SatELite [EB05] CNF simplifier before solving.

Tests were run using STP r1656 with a memory limit of 3GB and a time limit of

500 seconds on a single core of an Intel E5507 Linux computer.

STP2’s default strategy, which we disabled, is to perform Ackite upfront for

problems with few array expressions.

Table 5.1 shows the results for the four Ack configurations. The combinations

with SatELite and the Glucose SAT solver answer 3 or 4 more problems than does

Minisat 2.2. This demonstrates the advantage of being able to easily upgrade SAT

solver. Otherwise there are only small differences in performance.

5.6.2 A Comparison to Other Solvers

Nextwe ranBoolector 1.5.23, Sonolar r2483, Z3 3.2, and STP2 r1656with bothAbsre f

and DCI on the selected SMT-LIB problems. Boolector won the 2011 SMT-COMP

QF ABV division, Z3 was second, and Sonolar was third. We also include the fastest

Ack variant. The results are shown in Table 5.2.

All variants of STP2 solve at least 10 more problems than Boolector 1.5.23, the

nearest competitor.
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Boolector Sonolar Absre f Ackcn f+G DCI Z3

Family time fail time fail time fail time fail time fail time fail

bench ab 6 1 5 0 2 0 2
brummayerbiere 996 27 1313 29 830 27 766 25 639 28 1093 25
brummayerbiere2 799 6 790 7 604 1 783 737 1 957 14
calc2 1283 493 4 620 298 611 614 4
check 0 2 0 2 0 2 0 2 0 2 0 2

dwp formulas 677 4 247 4 144 659 139 990 8
egt 407 964 32 95 31 121
platania 94 1922 4 187 208 230 6

stp 1072 2 922 1 421 1 838 1 328 1 1516 15
stp samples 4 3 2 3 2 3

Sum 5338 42 6658 51 2839 31 3652 28 2718 32 5303 68

Time w/ penalty 26380s 32209s 18370s 17680s 18750s 39371s

Table 5.2: G is Glucose. For each family and solver: ‘time’ is the time in seconds that
solved problems took to complete; ‘fail’ is the number of problems that exceeded
the time limit or memory limit. The ‘Time w/ penalty’ is the sum of ‘time’ plus
501 seconds per failed problem. See Table 5.1 for the number of problems in each
family.

Solver Native Pre-process & Solve

Absre f 0.5s 0.7s
DCI 0.5s 0.7s
Ackcn f+glucose 3.2s 1.2s
Boolector 1.5.23 33.3s 5.0s
Sonolar 2483 36.5s 1.8s
Z3 3.2 > 1500s 5.1s

Table 5.3: Time in seconds to solve the countbitstableoffbyone0128 benchmark. The
first column give times using the specified solver. The second column gives times
using STP2 withAckite as a pre-processor, then running the specified solver.

In particular, the STP2 variants are consistently better than other solvers for the

brummayerbiere2 family. Table 5.3 gives the solvers’ times, on a single core of an Intel

Q8400 Linux computer, for one of the instances in that family, the countbitstableoff-

byone0128 benchmark. STP2 with Absre f is more than three thousand times faster

than Z3. To try Z3 with Ackite, we used STP2 as a pre-processor, with most sim-

plification disabled, to parse the problem, structurally hash it, performAckite, and

write the result out in SMT-LIB2 format. Ackite is the only approach of the four that

we investigated that reduces to a bit-vector problem—a format which other solvers

can input. The times to perform this preprocessing step and to run each solver are

given. Including the time for pre-processing, the other solvers are between six and
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three hundred times faster. For this problem, clearly theAckite approach is superior

to the approaches the other solvers currently implement.

On the platania family, Z3 was by far the fastest solver, about 15 times faster

than Boolector, and 31 times faster than STP2. The platania family is the only one

for which STP2 is not competitive.

The ff.stp problem, from the STP set, exceeded the 3GB memory limit on all

solvers. We reran it on a machine with 64GB of memory. STP2 withDCI and with

Ack solved the problem in about 1000 seconds using 28GB of memory. The size of

the CNF produced was about 95 million clauses in both cases. So many bit-vector

constraints, rather than the array constraints, make this problem hard to solve.

Surprisingly, the approach we used to enforcing theFCCmakes little difference

to the overall result. The SMT-LIB problems we selected required no more than

ten thousand FCC instances, which was not enough to contrasts the differences

between FCC instantiation approaches. In the next section we evaluate the FCC

approaches on a more difficult array problem.

5.6.3 A Problem Requiring Many FCC Instances

It is easy to build a more difficult array problem than those we have encountered

so far. Given a bit-width n, for 2n fresh variables (v0 . . . v2n−1) we now assert:

∀i∈0...(2n−1)(select(a
[n:n], i) = i ∧ select(a[n:n], vi) = i).

Example 5.18

With n = 1, the constraints are

select(a[1:1] , 0[1]) = 0[1]

select(a[1:1] , 1[1]) = 1[1]

select(a[1:1] , v[1]
0
) = 0[1]

select(a[1:1] , v[1]
1
) = 1[1]

�

This problem creates fresh variables and constrains them to equal the value

stored at the same index. For instance, v6 must equal 6. With n = 8, there are 512
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distinct select terms, but 256 of those have constant indices which are obviously

not equal to each other. At worst, (22n +
2n(2n−1)

2 ) FCC instances are instantiated by

Absre f andAck.

Because the result at every constant index is known initially, theDCI algorithm

will only assert FCC instances between pairs of selectswith one constant index and

one variable index. ForDCI, the maximum number of FCC instances asserted for

this problem is 22n.

For n = 8, Ack and Absre f will instantiate at most 98,176 instances, and DCI

at most 65,536 instances. We ran the experiments in this section on a single core

of a Intel Q8400 Linux computer, with a memory limit of 4GB. We observed these

results:

• Z3 3.2: 0.5 seconds, 19MB

• STP2 r1659 withDCI: 0.5 seconds, 32MB, asserting 31,547 FCC instances

• STP2 r1659 withAckcn f : 3.4 seconds, 104MB, asserting 98,176 FCC instances

• STP2 r1659 with Absre f : 17 seconds, 106MB, with 258 refinement iterations,

asserting 98,176 FCC instances

• STP2 r1659 withAckite: 19 seconds, 718MB, asserting 98,176 FCC instances

• Boolector 1.5.23: 41,400 seconds, 109MB, 67,062 refinement iterations

With Absre f , when the refinement limit is reached (line 35 of Algorithm 5.4),

about 65,000 FCC instances are asserted at once to the SAT solver. Ackite uses

about 7 times more memory thanAbsre f , even though both versions send the same

number of FCC instances to the SAT solver. This is because Ackite performs an

expensive AIG to CNF conversion step.

For n = 10, Ack and Absre f will instantiate at most 1,572,352 FCC instances,

andDCI at most 1,048,576 instances. We observed these results:

• STP2 r1659 withDCI: 12.1 seconds, 215MB, asserting 510,013 FCC instances

• Z3 3.2: 22.4 seconds, 56MB

• STP2 r1659 with Ackcn f : 641 seconds, 1929 MB, asserting 1,572,352 FCC

instances
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• STP2 r1659 withAbsre f : 14,103 seconds, 2780MB, with 2050 iterations, assert-

ing 1,572,352 FCC instances

• STP2 r1659 withAckite: exceeded the 4GB memory limit after 50 seconds.

For n = 10,Absre f asserted 1,047,553 instances all at once after iterating through

all select indices.

We did not rerun Boolector 1.5.23 at n = 10, because it was the slowest on the

n = 8 instance.

Ackite uses about 7 times more memory than Ackcn f even though the number

of FCC instantiated is the same. This is because Ackite bit-blasts to AIGs then

undertakes an expensive AIG to CNF conversion phase.

Z3 3.2 uses the least memory of the solvers, and solves problems quickly.

These problems are well suited toDCI because one side of the FCC instances is

always a constant. In the n = 10 case, there only 11 clauses and one fresh variable

introduced per FCC instance.

Because most of the FCC instances are needed to make this problem satisfiable,

the Absre f approach asserts all of the FCC instances. At n = 10, Ackite, which

asserts the same clausal form as Absre f , was about 20 times faster. Generally

Absre f performs best when most of the FCC instances are unnecessary.

As the number of clauses that are asserted to the SAT solver grows, Absre f

performs fewer iterations per second. This is because the search is reset each time

the SAT solverfinds amodel. Instead, if theAbsre f implementation asserted clauses

to the SAT solver during search (i.e. when the solver is not at decision level 0), like

DCI does, then the number of refinement iterations performed per seconds would

increase dramatically.

5.6.4 Quadratic Blow-Up of Select-over-Store Elimination

In this section we compare the performance of QF ABV solvers when solving prob-

lems that are specially crafted to quadratically increase in size when select-over-

store elimination (section 5.2) is applied. The problems we generate enforce that

the index and the result are the same at least at one position of the array. In these

problems we arbitrarily fix the index and result’s bit-width to 20.
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The problems have a chain of store expressions, with the same number of select

expressions reading from them. Note, there is no particular reason for the number

of store and selects to be the same. Given a natural number k, for k fresh variables

(v0 . . . vk−1) assert:

S = store(store(. . . store(a[20:20] , 0, 0) . . . , k − 2, k − 2), k − 1, k − 1)

Because there is no array extensionality, here S is a term variable. It allows us

to use the same array term in each of the selects:

∀0≤i<k(select(S, vi) = vi)

The problemwe have defined is contrived to be difficult for solvers which apply

Equation 5.4 to eagerly remove store expressions.

Example 5.19

For k = 3, the problem is:

S = store(store(store(a[20:20] , 0, 0), 1, 1), 2, 2)

v0 = select(S, v0)

v1 = select(S, v1)

v2 = select(S, v2)

When select-over-store elimination is applied to the k = 3 instance, the problem

is transformed into the following constraints:

v0 = ite(v0 = 2, 2, ite(v0 = 1, 1, ite(v0 = 0, 0, select(a, v0))))

v1 = ite(v1 = 2, 2, ite(v1 = 1, 1, ite(v1 = 0, 0, select(a, v1))))

v2 = ite(v2 = 2, 2, ite(v2 = 1, 1, ite(v2 = 0, 0, select(a, v2))))

�
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Consider an instance where k = 300. Initially there are about 600 array ex-

pressions. Applying select-over-store elimination increases this to about 90,000 ITE

expressions.

To solve with k = 300, Sonolar 2217 takes 0.07 seconds, Boolector 1.5.23 takes 1.7

seconds and uses 3.8MB of memory, STP2 r1398 takes 11 seconds and uses 1GB of

memory, and Z3 3.1 takes 3900 seconds and uses 740MB of memory.

To solve with k = 3000, Sonolar 2217 takes 0.7 seconds, Boolector 1.5.23 takes

202 seconds and uses 36MB, and STP2 r1398 exceeds the 4GB memory limit. We

did not re-run Z3 3.1 because it was the slowest at k = 300.

As can be seen, there is a large variation in the time and memory used by

different solvers. At k = 300, Sonolar 2217 is more than 55,000 times faster than Z3

3.1.

The quadratic blow-up due to select-over-store elimination badly affects STP2;

it is not able to solve the k = 3000 case.

5.6.5 A Comparison with STP 0.1

Ganesh and Dill [GD07] measure STP on 12 benchmarks. All of these benchmarks

are contained in STP’s public repository. The problems range in size from 8MB

to 442MB, in total they are 1.5GB. To quantify STP2’s improvement we re-ran the

measurements on a single core of a Intel Q8400 Linux computer with a memory

limit of 5GB. STP 0.1 is the version of STP initially open-sourced; it is downloadable

from STP’s web site. In Table 5.4we compare STP 0.1with STP2 r1656 usingAbsre f .

STP0.1 exceeds the 5GBmemory limit ononeproblem, and is faster thanSTP2on

twoproblems. Ignoring thememory-out, STP2 is about 7 times faster overall. Using

STP2 with DCI is 10 seconds faster usingAbsre f . Using STP2 with Ackite is about

10 seconds slower than using Absre f . So again, these problems are insensitive to

how theFCC is enforced. In total, STP2Absre f spent about 10 seconds performing

SAT solving; the rest of the time is spent parsing and simplifying the problem. So

further improvements for these problems will likely come from speeding up the

parsing and simplification phases.
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problem STP 0.1 STP2 r1656Absre f

610dd9dc.T MO 11s
grep0084 68s 4s
grep0095 84s 4s
grep0106 83s 4s
grep0117 94s 4s
grep0777 236s 25s
testcase15 26s 15s
testcase16 28s 17s
testcase20 26s 42s
thumbnailout-noarg.9872 593s 49s
thumbnailout-spin1-2.11493 1121s 94s
thumbnailout-spin1-concreteget 44s 56s

Total 2403s 325s

Table 5.4: Time in seconds for STP 0.1 and STP2 r1656 to solve the problems given
in Ganesh and Dill [GD07]. ‘MO’ is memory-out.

5.7 Related Work

Because arrays model the behaviour of a computer with memory, and because

they are a basic operation in many programming languages, their study has a long

history. Ackermann [Ack54] realised that a theory with uninterpreted functions

and equality can be reduced to a theory with equality by instantiating the FCC.

5.7.1 STP 0.1

Ganesh and Dill [GD07] describe what they call the “array substitution” optimisa-

tion. Assume we are given select(a, c) = t, where a is an array literal, c is a constant,

and t is a term not containing any array terms. The optimisation substitutes the

select expression throughout the problem by t. As described in section 5.1, STP2

only performs the replacement if t is a constant, which avoids both the expense of

traversing the expression t to find any array expressions, and the need to sometimes

bit-blast twhen it is needed to assert an FCC instance. TheAbsre f implementation

is not able to bit-blast extra expressions, only to generate FCC instances. Extra

work is needed to measure the cost and benefits of both approaches on a range of

benchmarks.

Ganesh and Dill [GD07] describe the select abstraction-refinement algorithm

of STP 0.1 which is the same, except for how the FCC instances are generated,

151



CHAPTER 5. BUILDING A BETTER ARRAY SOLVER

to Algorithm 5.4. They also describe a type of abstraction-refinement for stores,

which is currently disabled in STP2. As seen in subsection 5.6.4, and as described

by Ganesh and Dill, select-over-store elimination can quadratically increase the

number of expressions. In some cases their approach can avoid this blow-up, but it

complicates the implementation of the other algorithms. The store-absref algorithm

is not given in the paper, but an implementation is contained in the STP 0.1 source

code. Algorithm 5.11 gives the algorithm.

Algorithm 5.11 STP 0.1 store abstraction-refinement algorithm

Require: e, a formula
1: original a term variable, original← e
2: Create now, later, sets of CNF clauses
3: Create l, a list of pairs of select expressions, and variables.
4: for all select(store(. . .), i) ∈ e do // after a reverse topological sort
5: Replace select(store(. . .), i) in e by a fresh variable v
6: Add 〈v, select(store(. . .), i)〉 to l
7: end for

8: ApplyAbsre f to e, if it is unsatisfiable return unsatisfiable
9: if µ(original) = 1 then

10: return satisfiable
11: end if

12: for all (v, e) ∈ l do
13: if µ(v) , µ(e) then
14: Add the CNF for v = e to now
15: else

16: Add the CNF for v = e to later
17: end if
18: end for

19: Assert now to the SAT solver
20: If the SAT solver reports unsatisfiable, then return unsatisfiable
21: Assert later to the SAT solver
22: If the SAT solver reports unsatisfiable, then return unsatisfiable

The STP 0.1 approach to store-absref differs from other store abstraction ap-

proaches, for example Boolector’s (described in the next section), in that store-

absref results in at most two extra SAT solver calls. If the abstracted problem can

be solved, then we are done, otherwise select-over-store elimination is applied and

the problem asserted to the SAT solver.

Example 5.20

Consider:

select(store(a, t0 , t1), j) = select(store(a, t0 , t1), k)
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If select-over-store elimination is applied, this becomes:

ite(t0 = j, t1, select(a, j)) = ite(t0 = k, t1, select(a, k))

Instead store-absref (Algorithm 5.11) asserts the abstracted formula v0 = v1 to

the SAT solver. The original problems is evaluated with the SAT solver’s model. If

µ(v0) , µ(select(store(a, t0 , t1), j)), then: v0 = ite(t0 = j, t1, select(a, j)), is asserted to the

SAT solver. This asserts Equation 5.1 which was previously omitted from the prob-

lem. Likewise, if µ(v1) , µ(select(store(a, t0 , t1), k)), then v1 = select(store(a, t0 , t1), k) is

asserted. �

STP2 has the capability (inherited from STP 0.1 but currently disabled) to sort

stores where the indices can never be equal using a rule:

Given: store(store(a, i, j), k, l),

if i , k and i is less than k in a specified total order, rewrite to: store(store(a, k, l), i, j).

That is, if two store indices can never be equal, then order the stores according to

some total order on the index expressions. This normalises terms, but potentially

increases the number of terms.

Example 5.21

Consider the formula v0 = select(S, v1), where S is a syntactic variable

S = store(store(a, (t1 + 2), t2), (t1 + 4), t3)

If another formula is created, say, v1 = select(store(S, t1 , t4), t5), and if the indices are

ordered t1 ≺ (t1 + 2) ≺ (t1 + 4), then, if sorting of indices is performed, the formula

will be sorted so that the t1 index is the innermost. This requires the creation of

three store expressions, rather than just one. �

Because of the potential for blowing up the number of terms, we have disabled

this feature in STP2.
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5.7.2 Boolector

Brummayer and Biere [BB09] describe Boolector’s abstraction-refinement algorithm

for extensional arrays. Abstraction-refinement as implementedbyBoolector [Bru09]

is a more sophisticated implementation than STP2’s Absre f . In particular, their

approach has three features that ourAbsre f lacks: it handles array extensionality, it

does not perform upfront select-over-store elimination or remove array-ITEs, and

it encodes array indices to CNF when they are first needed (like STP 0.1 does).

Earlier versions of Boolector implemented an unconstrained simplification for

arrays. That is, if there is only a single occurrence of the array variable a, then

select(a, t) is replaced by a fresh variable. In general STP2 does not implement

unconstrained variable simplification for arrays but for problems with few array

terms, STP2 applies Ackite to convert array problems to bit-vector problems early

on. This has the same effect as performing the unconstrained array simplification.

The brummayerbiere3 family, which we omitted from our experiments, are crafted

benchmarks that are easy if unconstrained elimination of arrays is implemented.

Rather than remove array-ITEs and stores upfront, like STP2 does, which may

quadratically blow-up, Boolector performs abstraction-refinement which asserts

that the array theory axiom holds during the refinement phase. Unlike STP2, which

asserts just FCC instances during refinement, Boolector also asserts instances of

the array theory axiom (Equation 5.1), and the extensionality axiom (Equation 5.2).

Boolector begins by replacing selects termswith fresh variables, then an abstraction-

refinement loop checks the FCC, the array axiom, and extensionality axiom.

Brummayer and Biere [BB09] Section 11.6, describe how FCC instances are

encoded; STP2 uses the same CNF encoding which we presented as Algorithm 5.2.

Boolector asserts the CNF corresponding to an index expression when it is first

required in an axiom instance. For example, if the select expression select(a, t) is

replaced by a fresh variable v, and t appears nowhere else, then t is initially omitted

from the CNF. When t is required for an axiom instance, only then is it encoded

to CNF. If t is complex, and is not required for an axiom instance, there will be a

considerable saving. To simplify our Absre f algorithm, STP2 encodes all indices

to CNF before beginning refinement. The CNF clauses corresponding to all index

expressions are asserted to the SAT solver initially, because this makes the Absre f

algorithm simpler.
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Example 5.22

Consider the formula

select(store(store(a[n:m] , t0, t1), t2, t3), t4) = select(store(a[n:m] , t5, t6), t7)

Initially each select is replacedwith a fresh variable, giving: v0 = v1. In the following

we use µ to give the integer value from the SAT Solver’s model. If the model

returned by the SAT solver is: µ(t4) = 6, µ(t2) = 6, µ(t3) = 1 and µ(v0) = 2, then

Equation 5.1 is not satisfied, so Boolector asserts that: (t4 = t2) =⇒ (t3 = v0).

If another model is returnedwhere none of the store indices equals a select index,

that is, ((µ(t4) , µ(t2)) ∧ (µ(t4) , µ(t0)) ∧ (µ(t7) , µ(t5))), and the result of the selects

differs, i.e. (µ(v0) , µ(v1)), then Boolector asserts: ((t4 , t2)∧ (t4 , t0)∧ (t7 , t5)) =⇒

(v0 = v1) �

5.7.3 BAT

Manolios et al. [MSV06] describe the Bit-level Analysis Tool (BAT), an eager bit-

vector and extensional array solver. Their insight is that it is practical to enforce

array extensionality if the bit-width of indices is reduced—so that arrays can be

compared at every possible array index. Howmany indices the arrays need to have

to preserve satisfiability is calculated.

First, they apply the rewrite rules described in section 5.2. Because their prob-

lems may contain extensionality, this gives fewer rather than no stores and array-

ITEs. Then, they count the number of array accesses for each array and for each

array that it is transitively related to. Next, the count is increased to allow arrays to

differ at some positions. The indices’ bit-width is narrowed so that the cardinality

contains at least the necessary number of results. A quadratic number of constraints

are asserted, to enforce that the same index maps to the same reduced index.

Example 5.23

If there are only two selects from an array a: select(a, t[32]
0

) and select(a, t[32]
1

), then the

indices are narrowed to 1-bit. Two fresh 1-bit variables are created, v[1]
0

and v[1]
1
, and
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these constraints are asserted (t0 = t1) =⇒ (v0 = v1) and (v0 = v1) =⇒ (t0 = t1). �

Example 5.24

Assuming an expressions contains only the following array expressions:

select(a[6:6]
0
, t0), select(a

[6:6]
0
, t1), select(a

[6:6]
1
, t2), select(a

[6:6]
1
, t3), a0 = a1

Then it is always possible to have (a , b), because there are 26 possible indices

for each array, but constraints on only two of those indices per array.

BAT will calculate that is equisatisfiable to the case that uses an index bit-width

of 2 bits. Because the result is 6-bits, the equality (a = b) being 1 implies that all

24 bits (4 locations of 6 bits each) of each array are identical. This is less expensive

than asserting that all 26 locations are identical. �

Reducing the bit-width of indices is useful because BAT compares all the values

stored in arrays to determine whether two arrays are equal. Reducing the number

of possible indices makes this comparison practical.

5.7.4 Other Solvers

Biere and Brummayer [BB08a] describe a lazy solver for all-different constraints

over bit-vectors. An all-different constraint enforces that the bit-vectors in a set are

all assigned different values. We, like them, have a one-watched literal scheme. In

the conclusion of their paper they proposeDCI.

Integrating clause propagation with specialised reasoning as we do for DCI

has been done previously in other contexts. Chu Min Li [Li00] describes EqSatz,

a SAT solver that handles equalities specially. Equalities (bi-implications) between

literals are discovered in the CNF, and propagated by inference rules. One of the

inference rule given is: (l1 ⇔ l2 ⇔ l3) ∧ (l1 ⇔ l2 ⇔ l4) implies l3 ⇔ l4. This

equivalence reasoning is performed after unit propagation, and before search—like

we do. Likewise, the SAT solver Cryptominisat [SNC09] extracts exclusive-ors from

its CNF input, and applies Gaussian elimination to remove variables.
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Wewere introduced to the idea of generating CNF clauses inside the SAT solver

by the “Lazy Clause Generation” approach of Ohrimenko et al. [OSC09].

Ganesh et al. [GOSL+12] describe a SAT solver programmatic interface which

allows the trail to be iterated over, and for clauses to be introduced during search.

They call the approach of instantiating clauses as needed “online abstraction-

refinement”. If such interfaces became more expressive, and common across dif-

ferent SAT solvers, it would reduce the coupling between implementations ofDCI

and a particular SAT solver.

Bruttomesso et al. [BCF+06] decide whether to include all the FCC instances

upfront or to insteaduse interface variables to communicate between theory solvers.

They determine which approach is better based on the number of extra equalities

introduced.

Nelson and Oppen [NO80] give a congruence closure algorithm for solving

problems in the theory of uninterpreted functions with equality. Their congruence

closure algorithm is good at reasoning about the effect of nested function calls, for

instance, that f ( f ( f (a))) = a ∧ f ( f ( f ( f ( f (a))))) = a, implies f (a) = a. Nieuwenhuis

and Oliveras [NO05] give a congruence closure algorithm that can quickly explain

which equalities imply another equality. We expect the nesting of selects to be too

shallow in software verification problems to justify their approaches. That is, it is

rare to have deeply nested selects like select(select(select(a, t0 ), t1), t2)

Stump et al. [SBDL01] give a refutation procedure for the extensional theory of

arrays based on congruence closure which does not use a SAT solver. Brummayer

and Biere [BB08b] compare Stump et al.’s algorithm against Boolector’s abstraction-

refinement approach, finding their abstraction-refinement implementation to be

hundreds of times faster. It would have been interesting to explore whether SAT

based approaches like Ack perform much worse than Absre f approaches when

solving extensional array problems. We leave this for later work.

5.8 Conclusion

We focused on approaches to enforcing the FCC, in effect solving problems in

the theory of bit-vectors and uninterpreted functions. We found the SMT-LIB

benchmarks we selected to be insensitive to the approach chosen. We believe this
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is because few FCC instances are required. No SMT-LIB instance needed more

than 10,000 FCC instances. So, even the result ofAckwas a reasonably sized CNF.

Reducing, via Ack, to the theory of bit-vectors has the advantages of being able

to use: bit-vector theory simplifications, AIG simplifications, CNF simplifications,

and of being able to easily use, by some measures, the fastest available SAT solver

(currently Glucose 2.0). Using Glucose gave about 10% fewer failures than using

Minisat 2.2.

Solvers implement abstraction-refinement of selects to avoid necessarily assert-

ing quadratically many FCC instances. Solvers implement abstraction-refinement

of stores, and array-ITEs to reduce the chance of a quadratic blowup in the number

of expressions. On the SMT-LIB problems we examined, both approaches are un-

justified. However, we demonstrated crafted problems showing the consequences

of both blow-ups.

On a crafted benchmark (subsection 5.6.3), more FCC instances are required, so

the differences betweenFCC instantiation approaches was apparent. In particular,

STP2’sAbsre f implementation did not performwell when a high proportion of the

FCC instances were required. Because most of the FCC instances are necessary, it

is 20 times faster just to assert all the FCC instances upfront, rather than to perform

refinement phases that gradually approach the effect ofAck. Boolector performed

250 times more refinement iterations than STP2’s Absre f implementation. STP2,

inherited from STP 0.1, has an upper bound on the number of refinement iterations

that are performed. Absre f does not performmore refinement iterations than there

are distinct select expressions (Algorithm 5.4). Significant amounts of time can be

saved by placing an upper limit on the number of refinement iterations that are

performed. This demonstrates that asserting few clauses per iteration does not

guarantee good performance.

Wedemonstrated anadditional advantage ofAck: the ability to easily change the

SAT solver. STP withAckcn f and Glucose solved the most SMT-LIB problems. This

is a reasonable comparison as we started work on ourDCI implementation before

Glucose won the competition. It shows an advantage of being able to easily follow

improved SAT solver performance. Our DCI implementation is tied closely with

the SAT solver. At present there is no commonly used “low level” programmatic
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interface to SAT solvers. Such an interface would make it easier to move between

SAT solvers. TheAck approaches with Glucose 2.0 solved the most problems.

We showed crafted examples where DCI significantly outperformed Ack and

Absre f . The larger the number of redundant FCC instances, the better the relative

performance ofDCI. On the SMT-LIB2 problems, theAbsre f approach solved one

more problem than DCI did. In general, we believe the DCI approach is superior

toAbsre f , but at present lack the real-world problems to make a convincing case.

We showed that STP2 is a significant advance on STP 0.1, being about 7 times

faster (subsection 5.6.5). Although the other solvers thatwe compared against allow

the theory of extensional arrays, it is a quick syntactic check to identify whether

a problem has extensionality. The approaches that we have described could be

implemented as a special case for problemswithout extensionality by those solvers.

STP2’s default strategy is to perform Ackite upfront for problems with a small

number of array expressions. Currently the limit is ten. This conversion was

disabled in all of the experiments in this chapter. This conversion occurs before

the bulk of the bit-vector simplifications have occurred, converting the array part

of the problem into a bit-vector problem. If array expressions remain, then DCI

is performed. STP2’s current strategy is not ideal for the SMT-LIB problems, but

works well for the software verifications problems that STP2 is commonly used to

solve.
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6
Symbolic Execution for Automated Test

Generation

A
UTOMATED software verification and testing increases the confidence

that programs behave as intended. Research into the mechanisation of

the task began more than 30 ago, but waned as the difficulty of the task

became clearer; in particular scalability proved to be elusive. But recent advances

in constraint solving technology have rekindled optimism. At the same time, the

amount of software that needs to be trusted, in particular binary code, is growing.

In this chapter we describe a tool which we call, for no particular reason,

MinkeyRink. MinkeyRinkperforms automated test generation for binary programs

via structural fuzzing of unmodified Linux x86 binaries. It was our experience in

building MinkeyRink that motivated our work on the STP2 bit-vector and array

solver; we described that work in the first part of this dissertation. As we shall

show, MinkeyRink depends greatly on efficient and correct bit-vector and array

solving.

MinkeyRink analyses machine code programs, and generates problems which

bit-vector and array solvers, like STP2, are ideally suited to solving. In the evalua-

tion (section 6.7) we show that the majority of the time taken by our automatic test

generator is spent performing bit-vector and array solving.
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1 int32_t x; // A 32-bit variable.

2 input(x); // Read a value into x.

3

4 int32_t y = 4 * x;

5 if (x !=3 && y == 12)

6 print("fail");

7 else

8 print("OK");

Figure 6.1: A C-language program that sometimes fails. There are two paths
through the program. One path is taken for 3 possible assignments to x, the other
path is taken otherwise.

6.1 Background

Fuzzing is commonly used to discover inputs that cause a program to fail. Fuzzers

generate random instances of a language for use as inputs to a program. An oracle

then checks if the input causes the program to fail. If it does, then the input is

reported to a programmer for investigation.

Although useful, fuzzers are limited because they do not consider the internal

structure of a program. If only a small proportion of inputs can reach a part of the

program, a fuzzer is unlikely to randomly generate one of those inputs. For instance,

in Figure 6.1, just three of the 232 possible values for x will cause the program to

print “fail”. Structural fuzzers overcome this limitation by analysing the program,

and using its structure to generate inputs. Variations of the same approach go by

many names: smart-fuzzers, glass-box fuzzers, white-box fuzzers, concolic testing,

directed automated random testing, and dynamic symbolic execution.

We, like others (section 6.10), use symbolic execution (SE) as the basis for a

structural fuzzer. Symbolic execution builds formulae that precisely describe the

output state of a program in terms of its inputs. The terminology of symbolic

execution (sometimes called symbolic simulation) varies, so let us fix our use of

terms. SE makes use of a concept of the state of a computation, where a variable’s

value has been replaced by an expression that denotes a function of the program’s

input. We denote the instruction pointer register (which holds the address of the

next instruction to execute) by IP. A path is a sequence of instructions. For a given

input, a path can be constructed by running the program and listing the successive

IP values. (We assume, without loss of generality, that a program has a single entry
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point, IPinitial, and a single exit point IP f inal.) But even simple programs can have

trillions of paths, so a path-by-path analysis is impractical. When instructions are in

loops, or called multiple times in procedures, those instructions will occur multiple

times in the path. By a tracewemean a path and the input and output of the system

calls that occur along that computation path. A (symbolic) state is a map from

locations to expressions, together with the IP, where a locationmay be a register or a

memory address. The expressions that are mapped to are QF ABV expressionswhich

may contain symbolic variables.

Symbolic executionmay fork at some conditional branch instructions. Addition-

ally, a state is equipped with a summary of control-flow history: a path constraint

(PC) keeps track of the class of inputs that would have caused the same flow of

control. A state is feasible if it can occur along some path. It is natural to associate

a path constraint with a state, the PC being a constraint over the program input

variables. The PC describes the inputs that would take the same path through the

program, that is, the inputs for which the associated state is valid. States can be

seen to form a state tree, with branching occurring whenever a conditional branch

instruction depends on symbolic values. In the state tree, a parent’s path constraint

is equivalent to the disjunction of its children’s path constraints.

For instance, consider again the program (Figure 6.1) which fails if the input

is not equal to 3 and if the input multiplied by 4 is 12. When this program is

symbolically executed, a special symbolic variable (as distinct from the program’s

variables) is associated with the values returned from the input procedure. These

symbolic variables, and expressions that contain them,are contained in the symbolic

state. The symbolic variable, which we call s, is assigned to x in the symbolic state,

later when x is multiplied by 4, the symbolic state of y is updated to contain the

expression 4 ∗ s. With symbolic execution the analysis is simplified to reasoning

about just two possible paths—a tremendous speed-up.

Symbolic execution attempts to overcome the state space explosion. By maintain-

ing a state that describes many possible inputs, it is able to tractably reason about

many inputs simultaneously. In the example we just saw, billions of possible inputs

were split across just two states.

When the program of Figure 6.1 is run on some concrete input, at any control

transfer instructions, such as the (x !=3 && y == 12) test, the path constraint is
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1 int32_t x;

2 input(x);

3 print(12 / x);

Figure 6.2: A C-language program that may divide by zero

updated to trackwhichbranchwas taken. In this example, assuming the condition is

0, the path constraint is updated, from being empty (that is 1), to (s , 3∧(2×s) = 12).

If the path constraint is negated, then the constraint solver can calculate if there

exist inputs which would cause the program to take a different path. For example,

given a path constraint of (s , 3 ∧ (4 × s) = 12) and a state of (y = 4 ∗ s, x = s), the

solver may give (y = 12, x = (230 + 3)). In our simple example, through the source

code, there are just two paths through the program. One path is taken on three

inputs (x = 231 + 230 + 3, x = 231 + 3, and x = 230 + 3), and the other path on all

other inputs. A fuzzer that did not consider the structure would run for a long time

before discovering an input to cause a failure. A structural fuzzer, however, can

stop after exploring two paths; it has explored all possible paths.

If themultiplication in our example did not overflow, then taking the true branch

of the conditional would be impossible. This shows that, in reasoning about such

programs, considering overflow, as bit-vector solvers do, is important for ensuring

correctness.

The C++ language [ISO12] does not define the semantics of signed overflow, so

the semantics of the example program is undefined. That is, a C++ compiler is free

to return any value for 4 × 230. So analysing the source code alone is not enough to

define the semantics of the compiled program. Without knowing how the compiler

translates this program to machine code, it is difficult to say with certainty what

this program does. Analysing the binary, as we do, gives a more complete picture

of what the program does, because less is hidden.

Structural fuzzers generate and run fewer inputs per second than traditional

fuzzers. This is due to the considerable overhead involved in analysing the program

and generating new inputs.

The oracle needs to be more sophisticated if the paths through the program are

not apparent and depend on the data. A program with a division by zero, such

as Figure 6.2, is an example. In this example, there is only one path through the
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1 uint32_t x; // Unsigned 32-bit integer

2 input(x);

3 int count = 0;

4 for (int i = 0; i < 32; i++)

5 if ((x >> i) & 1)

6 count = count + 1;

7 print(count);

Figure 6.3: Pop count, with the path explosion.

program, but the program will behave differently depending on whether or not

x = 0. Because the division by zero does not execute a separate path to the other

inputs, an oracle that tests if a program possibly has a division by zero needs to

check the symbolic state at any division to check if the denominator could possibly

be zero. In this dissertation we do not consider the very real challenges of building

oracles.

Unfortunately, the path explosion problem afflicts symbolic execution. For in-

stance, Figure 6.3 counts the number of 1-bits in x. Unfortunately, this has as many

paths as inputs, since each input causes a different path to be taken. Ifweusenormal

symbolic execution on this program, then when we reach the print() procedure, the

symbolic state will only describe one input. This is bad because the advantage of

symbolic execution has been lost, that is, we are reasoning about each of the inputs

separately. This is the path explosion problem which we address in this chapter.

We investigate a state joining approach to making symbolic execution more

practical, and in this chapter we describe the challenges of applying state joining to

the analysis of unmodified Linux x86 executables. The results so far are mixed, with

good results for some code. We describe an algorithm which, in effect, analyses

an equivalent program with only a single path. For example, the state joining

algorithm will effectively transform the code in Figure 6.3 into that of Figure 6.4,

allowing the code to be quickly analysed.

Although relevant to other uses of symbolic execution, we are interested in

state joining in the context of the verification of binary executables. Dealing with

the path explosion is the key challenge in making symbolic execution useful for

software verification.

By combining the results of symbolic execution along all the program’s paths,

the behaviour of the program is described. Although the number of paths through
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1 uint32_t x; // Unsigned 32-bit integer

2 input(x);

3 int count = 0;

4 for (int i = 0; i < 32; i++)

5 count += ((x >> i) & 1);

6 print(count);

Figure 6.4: Pop count, without the path explosion.

a deterministic program is less than the number of its input states, real programs

still have intractably many possible paths. In traditional symbolic execution, states

are split at control flow instructions, and not subsequently joined, even where the

program’s control flowmerges. State joining addresses the path explosion problem

by coalescing states with the same instruction pointer. In the presence of state

joining, the state tree becomes a (directed, acyclic) state graph.

MinkeyRink dynamically disassembles a given executable. A natural approach

is to use symbolic execution on semi-random input to explore the space of possible

run-time states. The instructions executed on each branch are combined together

to produce, over time, a disassembled version of the binary.

We use dynamic disassembly to incrementally build a partial Control Flow

Graph (CFG). It is partial, because other blocks or transitions might have occurred

if the results from system calls were different, or a different length of input was

used. We use the partial CFG to determine when states can be joined.

section 6.2 explains why we are interested in analysing binary code, rather than

source code programs. section 6.3 gives a more detailed example to clarify our

approach. The example shows the advantages of state joining, disregarding the

practical difficulties (these are discussed in section 6.9). section 6.4 contains a de-

scription of the overall algorithm. Without applying simplifications, the symbolic

formulae quickly grow unmanageable. section 6.5 describes how Boolean minimi-

sation can be used to reduce a formula’s size. section 6.6 describes the specifics

of MinkeyRink. In section 6.7 and section 6.8 we compare runs with and without

state joining. Mostly state joining helps, but it does produce more cumbersome

constraint expressions, which can slow down the analysis. We discuss additional

obstacles in section 6.9 and compare our approach to others that tackle symbolic

execution’s path explosion problem (section 6.10).
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6.2 Why Binary Analysis?

Analysing source code, rather than binaries, is themore traditional approach to bug

finding. Each approach has its advantages and disadvantages.

Analysing binaries has the advantage that all the components that are used at

runtime irrespective of their source language have been converted into a common

language, that ismachine code,which inmost cases has preciselydefined semantics.

This avoids some of the challenges of analysing source code: of analysing different

languages, of obtaining the source code that is used at runtime, of determining how

the compiler translated the source code, i.e., which compiler options where used,

and of determining which compilers were used.

Source code has the advantage that the type and signedness information is

present. From binaries it is not straightforward to determine, for example, which

data elements are pointers and which are integers. Defects that are reported by a

binary analysis tool are harder for programmers to fix, requiring them to trace back

to the source code that produced the machine code.

Source code analysis is not specific to a given binary representation. A defect

that is specific to a particular architecturewill not be identified by binary analysis on

another architecture, for example, if a defect occurs for only one possible memory

layout of a procedure’s parameters. A source code analysis can consider multiple

semantics for the source code, rather than just a single specific semantics. If source

code is distributed and users compile the software themselves, it is good to be able

to analyse several of the possible binary forms simultaneously, rather than just a

particular form.

However, the source code may not be available to analyse. For example, when

using closed source components, compilers, libraries, device drivers, and operating

systems, a source code analysiswill have procedure calls without the corresponding

source code. Binary analysis provides the ability to analyse not just to the interface

with library functions, or systemcalls, but right through the operating systemkernel

to the interaction with hardware.

Large systems are often built using multiple languages. For example, C code

may contain inline assembly code, and the interacting components may be difficult

to check. Large programs combine components (some closed source) from diverse
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1 uint64_t multiply(uint64_t x0,uint64_t y0) {

2 uint64_t x = x0, y = y0, z = 0;

3 while(x!=0) {

4 if (!even(x)) /* (x&1) */

5 z += y;

6 x = x >> 1;

7 y = y << 1;

8 }

9 return z;

10 }

Figure 6.5: Using shift-and-add to multiply positive integers x0 and y0

organisations, and use multiple high level languages. Binaries give a common

representation.

6.3 State Joining: A More Detailed Example

To provide the intuition of state joining, we will describe the analysis of the Mul-

tiply example in Figure 6.5. The program uses shift-and-add to multiply two non-

negative integers x[64] and y[64], leaving the result in z[64]. We show C-style code for

clarity—all analysis is performed on unmodified executables.

Figure 6.6 shows a control-flow graph for the function, and Figure 6.7 shows

the state graph that is produced during joining. For each distinct x[64] value, a

Multiply call takes a different path through the function body; these many paths

make symbolic execution slow. For 64-bit integers, there are 264 distinct paths

through the function. To see this, consider the branching on the even condition

(block B3), which checks the rightmost bit of the x[64] variable. On each iteration,

the bits of x[64] are shifted one to the right, giving a new rightmost bit. For a given

x[64]
0

, the resulting symbolic expression for z[64] is an expression valid for every y[64]

value. For example, given (x[64]
0
= 2), the symbolic expression produced for z[64] is

(z[64] = (y0 ≪ 1)), with a PC that simplifies to (x[64]
0
= 2). The resulting expression

for z[64] describes the output state in terms of the input state. Substituting the input

values into the formula for z[64] gives exactly the same result as if the function were

run with the same inputs.

Symbolic execution addresses the state explosionproblemby reasoning about all

the states that take a particular path. In this case there are 264 paths to symbolically
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x = x0

y = y0

z = 0

if x == 0 goto B6

if even(x) goto B5

z += y

x = x >> 1

y = y << 1

if x != 0 goto B3

return z

B1

B2

B3

B4

B5

B6

1

2

3

4

5

Figure 6.6: CFG for multiplication code

execute, versus 264×264 initial states. We now face the path explosionproblem—this

function still contains 264 paths: too many to reason about one-by-one. With state

joining, states with the same IP are joined. This makes good sense for the example,

as two paths that have previously differed in whether one bit was one or zero could

have identical subsequent paths.

Each time a control transfer instruction is reached, a constraint solver call is

made to check which branches can be taken. For example, on reaching block B2,

in Figure 6.6, we call the solver to check which of the branches to points 2 or 5 can

be taken. In this example both branches can be taken, so the state is split, with

one branch conjoining the PC with x = 0, and the other using x , 0. We may

consider the state of the function to have 5 elements: x[64], y[64], z[64], the block that

will next be executed (the IP), and the PC. Figure 6.7 shows how the states are split

and joined. The topmost state in the figure corresponds to having just entered the

function, with the IP at program point 1. The second row results from handling

the x[64] = 0 condition. One state corresponds to x[64] = 0, the other to entering

the loop. There are two joins, shown with bold borders. If the states being joined
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x : x0

y : y0

z : 0

pc: true

ip: 1

x : x0

y : y0

z : 0

pc: x0 != 0

ip: 2

x : x0

y : y0

z : 0

pc: x0 == 0

ip: 5

x : x0

y : y0

z : 0

pc: x0 != 0 and !even(x0)

ip: 3

x : x0

y : y0

z : 0

pc: x0 != 0 and even(x0)

ip: 4

x : x0

y : y0

z : ite(even(x0),0,y0)

pc: x0 != 0 and (!even(x0) or even(x0))

ip: 4

x : x0>>1

y : y0<<1

z : ite(even(x0),0,y0)

pc: x0 != 0 and x0>>1 != 0

ip: 2

x : ite(x0!=0,x0>>1,x0)

y : ite(x0!=0,y0<<1,y0)

z : ite(x0!=0 and odd(x0),y0,0)

pc: x0 == 0 or (x0 != 0 and x0>>1 == 0)

ip: 5

Figure 6.7: The state graph for the example of Figure 6.6

have the same expression, then the value is unchanged, but if they are different, an

ITE constructor (for if-then-else) joins the different expressions. The result of a join

holds all the information of the component states. No information is discarded.

Eventually x[64]’s value at the end of B5 is (x
[64]
0
≫l 64), so that x , 0 is unsat-

isfiable. Then only the branch to point 5 will be taken. When this happens, the

final states will be joined together at point 5, producing the complete expression

for z[64] in terms of its inputs. The loops are unrolled automatically—no domain

knowledge needs to be entered about the number of times to unroll loops. Note

that this analysis is “anytime”: At any point in time, the analysis can be paused,

and information can be read out that correctly describes the program’s runtime

behaviour.
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Algorithm 6.1 Applying state joining to a program

Require: A CFG and an initial symbolic state s0
1: Fringe← {s0}
2: while some s ∈ Fringe has ip(s) , IP f inal do

3: for all {s1, s2} ⊆ Fringe such that ip(s1) = ip(s2) do
4: Fringe← {s1 ⊔ s2} ∪ (Fringe \ {s1, s2})
5: end for

6: s← choose(Fringe)
7: Fringe← (Fringe \ {s}) ∪ execute(s)
8: end while

9: return swhere {s} = Fringe

6.4 The Algorithm

The algorithm (Algorithm 6.1) takes a program to analyse, in the form of a CFG,

and the initial state comprising the PC 1, the IP IPinitial, and symbolic variables for

all inputs. The symbolic execution will then produce results covering all possible

values of these symbolic variables. Note that, because of the state joining at Line 4,

at Line 6, at most one element of Fringe will correspond to IP f inal. Therefore, at

the termination of the algorithm, Fringe will be a singleton set whose element

corresponds to IP f inal. The algorithm presented is somewhat simplified, in that it

does not show the decompilation of the program needed because we are analysing

binaries. In practice, we interleave decompilation with the symbolic execution.

Algorithm 6.1 relies on three key functions not defined here: execute, choose, and

⊔ (join on states). The execute operation extends the supplied state by executing the

instruction at its IP. Note that this will produce more than one state for selection

(conditional or computed branch) instructions. The next sections describe the choose

and ⊔ functions.

6.4.1 Preparing to Join

We want to propagate states, and then stop them where they can be joined.

Figure 6.8 shows two fragments of control-flow graphs. On the left, state m’s

instruction pointer is two blocks away from a join point, while state n’s instruction

pointer is one block away from the same point. We wish to execute n for one block,

and m for two blocks. The two states could then be joined. If either state is run too

far, past the same-IP point, that chance to join states is lost.

171



CHAPTER 6. SYMBOLIC EXECUTION FOR AUTOMATED TEST GENERATIO N

State m:

pc: ...

ip: B1

State n:

pc: ...

ip: B2

B1 B2

B6

B7

B8

State o:

pc: ...

ip: B8

State p:

pc: ...

ip: B7

State q:

pc: ...

ip: B6

Figure 6.8: CFG fragments. State m’s IP is two blocks from a join point. State n’s IP
is one block away.

For each state, we find all of the descendants of that state in the partial CFG.

Because every path finishes at the same exit block, the paths from the states will

intersect. For each state we find the minimum distance of that state to its earliest

descendant that is common to another state—we call these join points. We find for

each state the minimum number of edges that can be traversed before a join point

is reached. For each state we now have the minimum distance to its next join point.

Next, we remove from consideration as the next state to run, any state that post-

dominates another state. A node o post-dominates another node p if all paths from

p to the exit node must pass through o. Since the post-dominated node p should

pass through the dominator o, we do not wish to execute the post-dominating state.

The right of Figure 6.8 shows an example where the post-dominance check

applies. Each node is zero distance from its earliest join point. That is, if each node

is not advanced, another state may be joined with it. In the figure if state o were

advanced, it would be moved away from its join with states q and p.

We then choose a state to run for as many blocks as it is from its nearest join

point. This is not perfect, for instance a control transfer instruction might visit a

new block, causing us to transition through and miss a join point. We build the

control flow graph from all the control flow transfers that have occurred so far in the

simulator, as well as the static jumps—that is, jumps to a fixed location, where that

location has already been disassembled. Runtime calculated jumps (such as returns

from functions) that we have not yet seen are omitted. When control transfers to

a new location, we perform a dynamic disassembly and incorporate the resulting
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blocks into the control flow graph. Note that, if the nearest join point is missed, this

does not compromise correctness.

6.4.2 Joining and Splitting

States are joined, and sometimes split. A join occurs when two states will execute

the same instruction next. A split occurs when the location of the next address to

execute depends on a symbolic expression. We split in two contexts. Firstly, on

reaching a conditional branch instruction whose condition ϕ depends on symbolic

values, the current PC is conjoined with ϕ, and separately with ¬ϕ. If both are

satisfiable, the state is split and two states are created.

The second context involves states that have previously been joined. When a

function call may return tomultiple locations because the return addresswas joined

from states that called the function at different locations, the state needs to be split

at the return statement of the function to return the respective states back to their

call sites. We create a new state for each distinct next instruction. For example, if

the instruction pointer can be 2 or 4, then we split the state, resulting in two states,

one with a PC of (PC ∧ IP = 2) and another with a PC of (PC ∧ IP = 4).

To join states s1 and s2 where sk contains PCk and register and memory lo-

cations loc[i], create a new state s with PCs = PC1 ∨ PC2, and for all i, locs[i] =

ITE(PC1, loc1[i], loc2[i]). That is, if PC1 is 1, use the value from the first state, other-

wise use the value from the second state. This is allowable because PCs are always

disjoint.

6.5 Simplifications and Approximations

Symbolic execution, even of small programs, can result in large symbolic expres-

sions. This is especially sowhen analysingmachine code. The symbolic expressions

that are built are structurally hashed (section 2.6), but even so become large. Every

machine instruction which is executed may create a new symbolic expression.

We also apply range and domain analysis of pointers to reduce the number

of solver calls. The approximations we use over-approximate the encoding of the

constraints, but those constraints describe precisely (without approximation) the

behaviour of the program.
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6.5.1 Path Constraint Simplification

The Multiply example (Figure 6.5) has a simple branching structure, making its

PC easy to simplify. However, programs with more complicated control flow,

emanating, for example, from break statements, can benefit from PC simplification.

Without simplification, the PC becomes large.

In this section we simplify the PC by abstracting its primitive constraints as

propositional variables. We then apply Boolean simplifications to reduce the num-

ber of propositional variables in the PC, hopefully making the PC easier to handle

for a theory solver. We use a, b, and c to refer to propositional variables that describe

individual QF ABV constraints.

Continuing with the Multiply example, consider point 4 in Figure 6.6, where

the (x , 0 ∧ even(x)) state joins with the (x , 0 ∧ ¬even(x)) state. Letting a = (x , 0),

and b = even(x), the joined PC becomes (a ∧ b) ∨ (a ∧ ¬b). Applying the obvious

simplification reduces the joined state’s PC to (x , 0). Heuristic DNF minimisation

tools that apply such rules are available; we use Espresso [Rud86].

State splitting complicates this minimisation. Consider for example a return

statement from a function that returns to one of three addresses; perhaps because

calls from three different sites were joined. Let the potential new IP addresses be 4,

8 and 12, let the PC before the split be PC0, and let IP be the symbolic expression for

the instruction pointer when the transfer occurs. Then after the split there will be

three states: (PC0 ∧ IP = 4), (PC0 ∧ IP = 8) and (PC0 ∧ IP = 12). If all three states are

later joined, the PC will become PC0 ∧ (IP = 4 ∨ IP = 8 ∨ IP = 12) which should be

simplified to PC0. A Boolean minimisation algorithm will not do so—because the

second disjunction is not obviously true. We can, however, assist the minimisation

algorithm by modifying the constraints. Let a = (IP = 4 ∨ IP = 8), and b = (IP = 4).

Three equivalent PCs that can easily be minimised are: (PC0 ∧ a∧ b), (PC0 ∧ a∧¬b),

(PC0 ∧ ¬a).

Removing tautologies from the PC helps simplification. For example, consider

a PC that contains both x = 0, and ¬(x , 0). Label them a and b. No state will have

the PC (a∧¬b) that can simplify the b term. It is safe to remove constraints entailed

by other conjoined constraints, these constraints subsume prior constraints—they

add no information.
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a
b

c

Figure 6.9: Two path constraints

State joining produces many ITE expressions, so we carefully simplify their

guards. We calculate four possible guards and, as we describe, use the smallest one.

Consider two states to be joined, withPC1 = (¬a∧¬c) andPC2 = ((a∧¬c)∨(a∧b∧c)).

The PCs are shown on Figure 6.9’s unit cube—hollow circles for PC1 and filled

circles for PC2. One possible ITE to use for the joined locations is: locnew[i] =

ITE((¬a ∧ ¬c), loc1[i], loc2[i]). Another reasonable choice for an ITE is to take PC2

as the guard, and swap the order of the remaining arguments. However it may

be possible to generate a smaller guard by considering that the ITE expression will

only be evaluated if PC1∨PC2 is 1. Inspection of the cube shows that the potentially

simpler guard of a is equivalent to a ∧ ¬c. a covers only vertices of PC1 and those

that we don’t care about, it covers none of PC2’s vertices.

To minimise the guard, we mark the vertices of PC1 as 1, those of PC2 as 0, and

the rest as don’t care. Then we minimise using Espresso. Then we swap, marking

PC2’s vertices 1, PC1’s 0, and we minimise again.

As guard we choose the expression with the smallest number of nodes in its

QF ABV representation. These are candidate guards: PC1, PC2, the restriction of PC1

to PC1 ∨ PC2, and the restriction of PC2 to PC1 ∨ PC2.

During the constructions of symbolic expressions we follow standard practice

and apply rewriting rules to simplify expressions, for example turning x + 0 into x.

6.5.2 Value Analysis for Pointers

In the atol() functionused by a later example (Figure 6.10), each character is looked

up in an array to determine if it is a digit. So there is a lookup: isDigit[c], where

isDigit is an array of 256 values indicating whether or not each c is a digit. We

analyse such pointer accesses using three techniques: first by analysing the domain
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of the expression; if that fails, by analysing the range of the expression; and if that

fails, by solving for each memory address in turn.

The isDigit[c] expression will translate into a symbolic memory access such as

(base + (c ≪ 1)), that is, access the memory location at the value of the character

times two plus some fixed base (the location in memory of the zero index). As this

expression contains only a single 8-bit variable, it can take on only 256 possible

values. Because the domain is small, we build an expression using each of the

possible concrete values, ignoring the PC.

If the domain of an expression is large, we use a bit-vector interval analysis

[War02] of the expression to calculate the interval of the range. We use a signed

interval, where the lower bound is smaller than the upper bound. For example, a

subtraction expressionover two8-bit values eachwith a range of [0,1] has a resulting

range of [-1,1]. We widen to the whole range when an overflow occurs. A signed

range allows us to handle an expression such as (2 × t[8]) − 1. If t[8] is in [0,12], then

the range of the expression is in the signed interval [-1,23]; to be correct, an unsigned

interval wouldwiden terribly to [1,255]. Because of the ubiquity of alignedmemory

accesses we use strides, allowing regular gaps in the interval, for example a stride

of 2 on the interval [0,6] contains [0,2,4,6]. When performing the interval analysis,

we likewise ignore the PC. Balakrishnan [Bal07] gives the functions to calculate the

precise ranges for logical and arithmetic operations for strided intervals. Navas

et al. [NSSS12] use intervals that gracefully handle overflow, maintaining interval

precision even in the presence of overflow.

If the domain and range analysis produce too many values, or if some of the

values are not addressable, we (inefficiently) solve iteratively for the index subject

to the PC. For example, given a symbolic expression index, which first solves to

2, we then solve index such that index , 2, and so on. The solvers we use do not

have the option to produce all the satisfying assignments to a formula—which we

require to check all possible memory addresses. If there are many possible memory

addresses, then this operation will be slow.
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6.6 MinkeyRink’s Implementation

We analyse Linux x86 executables, both compiled binaries and interpreted scripts.

Given an executable, and an input width, we dynamically disassemble the exe-

cutable as it runs on a random input of specified length. The result of this dynamic

disassembly is a trace through the program. MinkeyRink then symbolically exe-

cutes using the control flow graph derived from the trace. When a control transfer

instruction is reached which depends on a symbolic variable, the bit-vector/array

solver is called and the state split if necessary. When symbolic execution reaches

an address that has not already been disassembled, a new dynamic disassembly

is triggered. The resulting trace is merged with previous disassembled traces to

build a more precise control flow graph. We follow Minato [Min96] and check the

satisfiability of each guard. A loop is unrolled until its guard evaluates to 0.

We use the Valgrind framework [NS07] to disassemble. Valgrind is a widely

used dynamic instrumentation framework for analysing x86 and PowerPC exe-

cutables on the Linux and AIX operating systems. We use Valgrind to identify

instructions, and also because it translates x86 instructions into a more manageable

RISC language. There are three advantages of dynamic disassembly over static

disassembly. First, during disassembly the results from system calls are collected;

these are later played back to the simulated program. Second, we disassemble the

dynamically linked libraries no differently from the program’s instructions. Third,

interpreted scripts, and their interpreters, can be analysed. Our dynamic disassem-

bly is time consuming, others [NLLC06] have used an initial static disassembly to

save time.

The PC and symbolic expressions are stored inside MinkeyRink as Valgrind

expression graphs, and converted to the QF ABV language for solving. We do not

utilise the solver’s custom interface. Insteadwe generate standard SMT-LIB format

and communicate via temporary files. Using the standard interface requires the

solver to redo work, but allows easy experimentation with different solvers.

We have built a simulator of Valgrind’s instructions, which executes the in-

structions symbolically and concretely. It simulates many, but not all, of Valgrind’s

instructions. Currently, MinkeyRink does not handle multi-threaded programs,

asynchronous signals, or floating point instructions.
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1 int main(void) {

2 char s[9];

3 long number;

4

5 printf("Enter a Number:");

6 fgets(s, sizeof(s), stdin);

7 number = atol(s);

8 if (number == 12345678) {

9 fail();

10 }

11 return 0;

Figure 6.10: Number: Error on input 12345678

1 uint64_t popCount (uint64_t y) {

2 uint64_t c;

3 for (c = 0; y; c++)

4 y &= y-1;

5

6 return c;

7 }

Figure 6.11: Wegner: Counting 1-bits

The program’s state is modified by Linux system calls. We have symbolic

versions of some systemcalls only, the remainderwe replay from the traces captured

during dynamic disassembly.

6.7 Results

To explore the usefulness of the state joining approach we analyse four programs.

One is a simple C program that will fail if a particular integer is input (Figure 6.10).

In this example, the function describing the result of atol() is surprisingly com-

plicated: Given 9 characters of input, there are about 1020 different inputs that will

evaluate to 1, corresponding to white space followed by an optional plus sign, fol-

lowed by 1, followed by non-numeric characters. The second is a program that

counts the number of 1-bits in a number (Figure 6.11). The third is the Multiply

example of Figure 6.5. The fourth example is the gzip file compression program.

In the Number example, an input that causes the program to fail is derived. For

the remaining threeprograms the input-output function is derived. For theMultiply
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Problem

Category Number Gzip Wegner Multiply

Bytes input 9 1 8 16
Dynamic Disassemblies 9-16 1 1 1

With joining

Total time 126s > 30000s 33s 45s
Solver time (STP r60) 90s > 26973s 28s 11s

Solver calls 110 > 684 67 131
Boolean simplification 4.5s > 103s 3s 5.5s

Joins 60 > 510 64 127
Maximum height 94 > 500 67 131
Maximum width 5 2 2 3

Without joining

Total time 732s 4006s 35s –
Solver time 555s 3312s 25s –
Solver calls 6929 34944 66 –

Boolean simplification 82s 52s 3s –
Paths for Symbolic Exec. 1662 256 65 264

Table 6.1: Results of applying state joining. Running with STP revision 60. Gzip
with state joining timed out after 30,000 seconds.

example, this could be used to show the commutativity of multiplication. For the

Wegner example [Weg60], this could be used to determine that the return value is

always less than 65. For gzip, this could be used as the first part of establishing that

gunzip composed with gzip is the identity function for some size inputs.

Table 6.1 shows the results of running these four programs. Some of the rows

are: Dynamic Disassemblies: the number of calls to the dynamic disassembler (the

value varies depending on the initial random input chosen); Joins: the number of

pairs of states thatwere joined;MaximumWidth: the greatest number of active states

at any time (the maximum width of the state graph); Maximum Height: the longest

path through the state graph.

Wemade three runs of each analysis; the times shown in Table 6.1 are arithmetic

averages. Times were measured on a single core of a Pentium D 3GHz, running

Ubuntu 8.04. We use revision 60 of STP, which we found to be the fastest available

solver at the time.

A program that generates all one byte files, then gzips them, then builds an

input-output function takes 7 seconds to run. To produce the equivalent formula
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by symbolic execution takes 4006 seconds, and to produce the same formula by

state joining timed out after 30,000 seconds.

Gzip, when symbolically executed, produces singleton states—each input fol-

lows a different path. So symbolic execution has no advantage over dynamic anal-

ysis. The PC that state joining produces is more difficult to solve, overwhelming

the savings from merging.

For the Wegner example, the number of paths is equal to the bitwidth plus

one; in our example, 65 paths. State joining on this example joins just before

the exit—the same as symbolic execution. The Wegner example benefits neither

from the Boolean simplifications nor from the pointer value analysis. The Boolean

simplifications occur at the join point at the function’s return, when the PC is no

longer used. The pointer value analysis, as for the Multiply example, does not help

because the analysis produces no symbolic pointers.

The Multiply example has a simple structure, with control transfer instructions

that join back on each other—producing constraints that easily cancel out. With

Boolean simplifications disabled, the example takes more than 50 times longer to

run. It is well suited to state joining. Note that we pass the function symbolic

variables, not characters turned into numbers. Parsing the numbers would require

effort comparable to that in the Number example.

6.8 MinkeyRink with STP2

When we performed the evaluation of MinkeyRink, before we began work on

STP2; STP r60 was the best available bit-vector and array solver for the problems

we generated. This is a version of STP prior to the improvements described earlier

in this dissertation. In this section, we re-run some of the same test problems shown

in Table 6.1 with STP2 r1654. The results in Table 6.2 show the time spent solving

on a single core of a Pentium D 3GHz, running Ubuntu 9.04. The table gives just

the time spent in STP2. Again, we did not attempt to run the Multiply example

without state joining because of the very large number of paths.

We have not been able to get MinkeyRink analysing gzip reliably on Ubuntu

9.04. Since we did the initial work, vector instructions have been compiled into

the standard libraries used by gzip, which MinkeyRink does not currently analyse.
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Problem Solver calls STP r60 STP r1654

With joining

Number 179 101s 39s
Wegner 67 30s 14s
Multiply 131 12s 17s
Gzip – – –

Without joining

Number 3697 375s 200s
Wegner 66 27s 13s
Multiply 264 – –
Gzip 34944 2031s 2878s

Table 6.2: Results of applying state joining, comparing STP r60 and STP r1654.

However, we stored the longest running QF ABV problem we encountered during

the evaluation (Table 6.1). STP r60 takes 2862 seconds to solve this problem. STP2

r1661 solves the same problem on the same computer in just 26 seconds.

The results in Table 6.2 show only a modest improvement for STP2 versus STP.

Many of the problems are small and easy. The more advanced simplifications that

STP2 performs have an overhead that is not justified for such easy problems.

6.9 Complications

There are some practical complications with state joining for executables. Linux

has hundreds of system calls that can modify the program’s state. MinkeyRink has

symbolic versions of the semantics for only a few system calls; for the remainder we

replay the system call’s results which Valgrind captured during the dynamic disas-

sembly. Before replaying the result of a system call we check that the parameters

are the same. Our assumption is that system calls that are called in the same order

with the same input will produce the same results. This limits further the strength

of the guarantee we extract. For example, if a program would behave differently

on different dates, we would not discover this, as the result of the system call that

returns the date is not made symbolic.

Because we replay traces of the system calls, if inputs cause the program to

make different sequences of system calls, the analysis will not have the appropriate

system call to replay. One solution may be to split the state whenever the sequence

of system calls changes, but we do not do this yet.
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1 if (a>0)

2 p = malloc(100000);

3 else

4 p = malloc(0);

5 *p = 0;

Figure 6.12: A complication for state joining

If two states have different system call traces then theymight not be appropriate

to join. At present we cannot analyse the program shown in Figure 6.12, as the

memory assigned on each branch is different. If we allowed the memory mapping

system calls to vary on branches then one state would have memory allocated that

the other did not. States cannot be joined just when their next instructions are the

same. The system calls to the operating system that have been performed, such as

allocating memory, and opening files need to be checked when joining states. We

only join states that have performed system calls we know are safe. For instance,

we do not join states that have different files open, or different memory allocated.

Using dynamic disassembly, we cannot visit locations that are not reached at

runtime, so we cannot analyse error handling code unless the error occurs at run-

time. For example, if wewish to insert error return values from systemcalls, such as

a file read failing, then we need to disassemble the error handling code. Currently

we cannot introduce failures when performing a disassembly, so we cannot explore

the error handling code.

Over-zealous joining is detrimental. For small functions, joining is undesirable,

as the cost of joining/splitting overwhelms the saving. If a function is called from

different sites and contains few instructions, the joined states will run for a few

instructions before splitting when the function returns to the different call sites. We

need heuristics to decide when to join.

Another limitation is that symbolic execution generally operates on a fixed input

width, say 20 bits. Depending on the program structure, greater input lengths may

be required to cause a particular failure. Symbolic execution builds expressions

that describe the program for some fixed length input. For some inputs this may

be equivalent to checking each smaller length input, but usually not.
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When choosingwhat to join, wedonot consider the call site. Consider a function

which is called at the start and end of a program. Our analysis does not take the

call site into consideration, so it believes that calling the function could return to

either the start or end of the program. Our analysis is context insensitive: it does

not determine that the return address on the stack is the particular address that will

be returned to.

6.10 Related Work

There has been a tremendous amount of software verification research. In this

section we focus just on closely related work. Bounded model checking and ab-

stract interpretation are the two most popular competing alternatives to symbolic

execution.

The idea of symbolic execution (MinkeyRink’s conceptual basis), is usually

attributed to King [Kin76], but others such as Howden [How77] and Clarke [Cla76]

were working on the approach at the same time.

From the early 1980s until about 2000, little research was conducted into the

symbolic execution of software. By 2000, enough had changed to make symbolic

execution of software practical. First, owing to the rise of the internet, we sawmore

security critical programs; many more programswere exposed to untrusted inputs,

for instance web browsers, document readers, and media players. Second, the size

of the programs we wish to analyse has grown slower than the speed of computers.

Now, we are interested primarily in the parts of the programs that read and verify

the structure of untrusted input. Third, Boolean satisfiability solvers are faster than

ever.

The most obvious change to automated test generation (ATG) systems over the

last 30 years has been that the constraint solving engines available to ATG systems

have become more powerful. SELECT [Kin76] solved problems using a linear and

conjugate gradient solver. Clarke analysed FORTRAN using linear solver, while

EFFIGY used a polynomial solver. Systems like EXE [CGP+06] use SMT bit-vector

and array solvers.

SE tools need to mark some values as symbolic. This is typically done by

marking input from the user, file or network as symbolic variables. However, it
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could be any values, even the intermediate values in computations. In our work

we mark input as symbolic. Godefroid et al. [GKL08], instead of marking the input

as symbolic, mark the result of the lexer as symbolic. Marking the lexer’s result

as symbolic avoids redundantly generating input that the lexer considers to be

identical, for example multiple white space characters. Wherever in the program

the symbolic variables are introduced—the tools and theory are the same.

6.10.1 Tools

Currie et al. [CHR00] use SE to show equivalence between optimised and unopti-

mised sections of assembly code for a digital signal processor.

Larson and Austin [LA03] track the intervals that variables may range over in

a symbolic state. They use the analysis to find accesses to out of bounds memory.

Their tool does not reason precisely about overflow. Cadar and Engler [CE05]

describe EGT, a structural fuzzer which uses source-to-source transformation, and

the CVCL SMT solver. Sen et al. [SMA05] describe CUTE, a tool which operates on

the source code representation and uses linear constraints in the symbolic state.

EXE [CGP+06], and its successor Klee [CDE08], starts from an actual execution,

then negates each constraint of the path constraint one-by-one. A new execution

path is generated that takes the same path up until the inverted constraint, but

afterwards it takes a different branch. Paths that will visit previously un-reached

locations are prioritised. EXE, with its aim of visiting previously un-reached state-

ments, has heuristics that produce statement coverage. These heuristics are much

simpler than attempting to derive input that reaches a particular instruction. In

practice they achieve good results.

SAGE [GLM08] likewise negates constraints one-by-one and solves them, but

prioritises the PCs that visited new states. The SAGE system starts from the first

constraint in the PC, and negates it. If the prior constraints conjoined with the

negated constraint is satisfiable, then a new input has been found. The program

is run dynamically with that new input. Inputs are scored based on the number

of new blocks they reach. The PC of inputs that discover more new blocks are

scheduled before those that discover fewer.

EXEandSAGEare bothdefect-finding tools; theydonot exhaustively check each

path. Their heuristic of preferring paths that visit previously unvisited statements
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prevents the path search from unrolling the same loop indefinitely. Neither tool

performs a directed search for problems. Instead, both tools happen across defects

as they explore paths.

Other approaches have been developed to target particular parts of a program

for execution, for instance Ma et al. [MPFH11]. Several other structural fuzzers for

binaries have been developed, for instance OSMOSE [BH11] and Avalanche [IS10].

6.10.2 Symbolic Memory Accesses

Symbolic memory accesses are generally handled in one of three ways: by con-

cretisation, exhaustion, or abstraction. Concretisation dramatically increases the

number of paths through the program. Handling the accesses exhaustively may

require large arrays to be included in the formula. For example, if a symbolic index

could take on 212 values then all 212 values need to be encoded in the formula.

Abstraction of arrays is often performed by first setting the result of the memory

access to an unconstrained value, that is, any possible value. The precise expression

is included only if needed.

SAGE concretises symbolic index expressions. Coen-Porisini and De Paoli

[CPdP93] employ the exhaustive approach, associating with each symbolic variable

a set of symbolic values and the predicates for when the symbolic value applied.

They provide a denotational semantics for the approach, but not a description of

how to compress the constraint. King [Kin76] forks execution on each constraint

value, in effect checking concretisations one by one, which we found to be too slow.

EXE divides memory into regions; this allows the solver to work on different

distinct parts ofmemory separately. It determineswhich region the concrete pointer

indexes into, and constrains the symbolic value to be inside this region. This is

similar to solving the bounds to establish the range of the pointer.

The abstraction approach to handling symbolic index expressions is used in

a different setting by Engler and Dunbar [ED07]. Under-constrained symbolic

variables are variables that do not have all the appropriate constraints applied to

them. If an under-constrained variable causes a failure, an appropriate constraint

(such as that the denominator is not zero) is applied to it, and execution continues if

the constraint system is satisfiable. If the constraint is unsatisfiable then the failure

must occur. This is unsound, but useful in their setting, for testing subsystems.
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6.10.3 Handing the Path Explosion

The path explosion problem of symbolic execution has been addressed by others.

Kölbl and Pixley [KP05] investigate state joining of programs written in a subset

of C++, and describe it well. The principal difference with our work is that we

focus on analysing arbitrary binaries which can use dynamic memory and pointer

arithmetic.

Boonstoppel et al. [BCE08] discard states that differ from other states only in

locations that will not later be read. Consider a conditional output statement such

as if (guard){printf(‘‘value’’);}. If both branches are taken and outputs are

ignored, the states do not differ. One can be discarded, as the remainder of their

paths will be the same. This approach requires the calculation of which locations

will be read and written to in the remainder of the path. Deciding this statically for

machine code ismore difficult owing to themore complicated control flow transfers.

Our approach ismore general—allowing the joining of states that differ in variables,

while not requiring the calculation of which variables may be read from or written

to later. The calculation does allow discarding of symbolic expressions that will not

be used later—a good way to conserve memory.

Kuznetsov et al. [KKBC12] estimate the effect of merging states based on how

symbolic variables are later used. They show promising results.

6.10.4 Other

To automatically vectorise loops during compilation, Allen et al. [AKPW83] use

Boolean simplification and if-conversion to remove if-then-else statements. A state-

ment such as if(g){y=x} else {y=z} is converted into:

y = (x & guard | y & guard), where guard is the sign extension of g to the bit-

width of y, where g is considered to be a 1-bit variable. We suspect that compilers,

like GCC, which implement if-conversion will produce binaries that MinkeyRink

can analyse more efficiently, because fewer states are split.

Arons et al. [AEO+08] fork execution at each branch, adding both paths to a

list of paths to explore. If paths are stopped at the same location, they are merged.

The merging is performed like we do, effectively creating an if-then-else where the

guard is the respective path-constraint. The merging is sensitive to the order of
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path exploration; only paths currently stopped at that location are merged. The

approach, while good, relies on users choosing good merge points. The approach

that we develop is completely automatic.

The Calysto tool [BH08] also merges paths, but only unrolls loops once. Calysto

symbolically executes the program’s functions, so each function is only analysed

once. Calysto then inlines each function at call sites. In our case, unrolling the loop

once only causes an unacceptable loss in precision, probably because we analyse at

a binary level where each iteration does less. Calysto, on the other hand, achieved

good results with the once-only strategy.

Symbolic execution has also been used to show the equivalence of programs

[Min96]. Minato’s system [Min96] handles conditional branches (if-then-else) and

data dependent loops (while-end) using BDDs. Minato demonstrates this on Eu-

clid’s GCD algorithm, producing a BDD that encodes the function for up to two

10-bit inputs. Conditional branches are transformed statically to the equivalent ITE

functions. So if (a)then {b=c} else {b=d} becomes b ← ITE(a, c, d). Loops are

handled similarly: new ITE expressions are introduced until the BDD that encodes

the guard is unsatisfiable. So after two passes, the loop while(a){b=c} is trans-

formed to b← ITE(a2 ∧ a1, c2, ITE(a1, c1, c0)), where the subscripts refer to the value

of the variable at that iteration.

Godefroid [God07] describes a compositional analysis. When a function is

called, the changes that the function makes are recorded, and the PCs added by

the function are recorded. Later if the function is called again, the PC is checked

for satisfiability; if it is satisfiable, then the results from the prior function call are

written into the state. If thePC is unsatisfiable, then the function is executed, and the

PC and results stored. With enough calls, the disjunction of PCs from the executions

will cover any possible input. This system differs from Calysto in that the results of

functions are composed run-by-run. The stated advantage of this demand-driven

approach is that extraunfeasible paths are not summarised. Withmachine code, this

approach is more difficult to apply. There could be differences between the calling

contexts of a function that are not obvious, especiallywhen analysingmachine code,

where the operands of functions are not explicitly indicated.

Clarke et al. [EC03] unroll loops and install an unwinding assertion. Loops are

unrolled, up until a limit, until the unwinding assertion is necessarily 0. They apply
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1 if(e)

2 {

3 I();

4 if (e)

5 {

6 I();

7 if (e)

8 {

9 I();

10 assert(!e);

11 }

12 }

13 }

Figure 6.13: Example of unrolling 3 times. The loop is unrolled until the unwinding
assertion, shownhere as a n “assert” is necessarily false, or until an unwinding limit
is reached.

source transformations to reduce the control transfer instructions to just goto and

if. For example, unrolling while(e){I();} three times produces Figure 6.13.

Xie and Aiken [XA05] unroll loops using BDDs to associate guards with each

statement. They contribute a programming language semantics that details for-

mally how to translate operations into updates of the guards and states. One state

subsumes another if its state is a superset of the other state. For example, two paths

through a program that differ in what they output could be joined if the output

makes no difference to the state.

Boonstoppel et al. [BCE08] perform a liveness analysis on symbolic expressions,

pruning those that are unreachable from the path constraint, and then merging

paths. Their insight is that multiple paths often produce the same effect, either if

there are no side effects from branches, or after the side effects have operated. For

example, at the end of a block, one path may have the constraint that {c , 0} and the

other that {c = 0}. If c is dead, however, this distinction is immaterial. Note that the

properties need to be checked before merging, in case the path difference triggered

a fault.

6.11 Conclusion

State joining aswe have implemented it has varying performance. The performance

of the approach depends on the difficulty of solving the generated constraints. On
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the gzip example, the constraints became so expensive to solve that state joiningwas

slower than both exhaustively executing the program and symbolically executing it.

In particular, gzip produced many symbolic memory indexes which slowed down

STP r60.

However, as SMT bit-vector and array solvers become more sophisticated, ap-

proaches like the one we have described will become more practical. Over time we

hope that the underlying solvers will increase in sophistication, removing the need

for tools to carefully manipulate the problems they need solved.

Incidental to deriving the program’s input-output function, we extract an ac-

curate (partial) CFG from the binary code. The approach generates a safe under-

approximation of the CFG using a flow sensitive analysis. A corresponding upper-

bound of the CFG can be produced by abstract interpretation [KVZ09].

State joining is useful if the following conditions apply: the paths call a similar

sequence of system calls, the number of paths through the program is large, and

memory is rarely written to at symbolic locations.

Three improvements to our implementation are apparent. First, it is common

around loops for later constraints to imply earlier ones. It is not apparent to a

propositional simplifier that (from the Multiply example): (x0 ≫l 2) , 0 implies

(x0 ≫l 1) , 0. Removing earlier constraints when they are implied by later con-

straints is desirable because it reduces the redundancy. Second, and related, is that

with our current simplification scheme based on propositional variables, the per-

formance of the analysis is dependent on whether the constraints simplify during

joining. If the joined PC can be simplified, as in theMultiply example, performance

is good. However, slight syntactic changes to conditionals can dramatically increase

running time. For instance, changing the Multiply example slightly so that the di-

amond shape is lost, causes analysis to take more than 100 times longer. Using the

solver’s native interface tomaintain the state’s PCwould reduce the amount ofwork

the solver needs to perform. Third, the use of a generalised memoization (compo-

sitional) would reduce the amount of re-work performed. Currently we reprocess

functions repeatedly rather than reusing the prior work that was performed.

Normal symbolic execution of binaries allows arbitrary properties about the

input-output function of programs to be verified, but the technique works poorly

on programs that have many paths through them. We have investigated how state
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joining may help. So far we have a number of promising results for analysing

unmodified executables, as well as examples that do not benefit. However, this is

an area full of opportunities for future improvement.
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7
Conclusion

T
HIS thesis has investigated building bit-vector and array solvers, and their

application to analysing machine code programs. Bit-vector and array

solvers are widely used to answer questions about the behaviour of soft-

ware. Analysing machine code programs is a way to automatically discover low-

level defects, like division by zero.

In our investigationof bit-vector solverswe largely focussedonsimplifications—

ways to make bit-vector problems easier to solve. We now summarise our contri-

butions to simplification.

Our variable elimination approach (section 3.4) is a conceptually simple way of

repeatedly isolating variables on one side of an equality. It is more general than

other approaches because, for instance, it also eliminates variables that occur in

bit-vector xors.

Bit-blasting equivalence checking (section 3.8) transfers equivalences detected

by and-inverter graphs (AIGs) back to the bit-vector theory-level. The equivalences

that are deduced during bit-blasting are used to further simplify the bit-vector

problem.

A new approach to discovering equivalences (subsection 3.11.1) provides a way

for authors of bit-vector solvers to discover new and interesting rewrite rules.

Automatically discovering equivalences makes it less likely that useful rules will

be missed. It helped us find rules that we would otherwise not have discovered.

Theory-level bit propagation (chapter 4) simplifies bit-vector problems by de-

ducing the value of some bits at the bit-vector level, rather than at the propositional
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level. For each operation in QF BV we built a propagator which transferred bit in-

formation between its operands and result. We found that Z3, when enhanced by

this approach, answered 10% more of the test problems.

Comparing each propagator against the result of the corresponding optimal

propagator (section 4.8) showed that the implementation of several of the propaga-

torswas optimal on all the assignments generated. Likewise, on all the assignments

generated, unit propagation over the CNF of bit-vector xor, bit-vector or, bit-vector

and, and equals were optimal. If building a combined SAT and propagation solver,

it would make sense to encode those operations as CNF rather than using propa-

gators for them because their CNF encodings are compact and propagate strongly.

For multiplication we applied a novel technique which we called column bounds

propagation, which subsumes other more simple propagators.

A common reason not to build optimal propagators is that the advantage of

the extra precision is outweighed by the extra time it takes to obtain the precision.

Measuring the running time of the propagators (section 4.10) showed that generally

the implementations are efficient. However, the implementation of the 6-bit optimal

multiplication propagator (section 4.9) was too slow to be useful. We found it useful

to calculate the effect of the optimal propagator without undertaking the effort to

build the propagators. We determined that theory level bit propagation would

provide a benefit before having invested the effort to build the propagators.

TheDCI array solver (chapter 5) includes a lazy approach to clause generation.

Compared to an abstraction-refinement solver, it asserts clauses to the SAT solver

sooner after they are required. TheDCI solver works particularly well on problems

that require many abstraction-refinement iterations. However, the disadvantage

of the DCI approach is that the implementation is tied closely to a particular SAT

solver, in our case Minisat 2.2. Implementing the approach in a more modern SAT

solver is complicated because of the complex invariants that need to bemaintained.

For instance, Lingeling ([Bie12]) maintains several data structures relating to the

clauses that need to be incrementally updated as extra clauses are added asserted

during the search. Other approaches (like Ack) have better modularity, making it

easy to use whichever SAT solver is the best or most appropriate at a given time.
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TheDCI array solverwas slower on the evaluation problems than anothermuch

simpler array solver (Ack). On test problems STP was about 7 times faster than a

prior STP version (subsection 5.6.5).

A goal of some abstraction-refinement array solvers is to instantiate a small

number of function congruence constraints each iteration. In the worst case these

solvers performO(k2) iterations, where k is the number of array selects. STP 0.1 has

a lower upper limit of k, asserting all of the function congruence constraints when

the limit is reached—this can save considerable time.

MinkeyRink (chapter 6) is a tool for analysing binary programs. MinkeyRink

joins and splits symbolic states to overcome the path-explosion problemof symbolic

execution. Joining statesmeans that an exponential blow-up in the number of states

can sometimes be avoided. Our implementationwas sensitive to the order in which

states were joined. If states were joined so that the path constraint simplified nicely

then itwas effective. The tool could be improved by takingmore carewhen choosing

which states to run so that the path constraint simplified more often.

Some of the research we have presented, we believe, merits further research.

Technology mapping was the most effective of the solver’s phases. However,

the comparison we performed compared technology mapping to the Tseitin trans-

formation. A more relevant comparison, which we leave for future work, is to

compare Technology Mapping to more modern encodings like the Plaisted and

Greenbaum translation. Further, we performed parameter optimisation to amongst

other things, select good bit-blasted encodings for technology mapping. To make

the comparison fairer, all the parameters should be returned.

The encoding of multiplication using sorting networks seems like it should be

effective. Future work is required to understand exactly why it is not helpful.

The algorithm we gave for generating rewrite rules may generate more appli-

cable rewrite rules if constants are not generated on the left-hand side. Further, it

might be possible to improve the efficiency of the search for new rewrite rules by

better caching calculations.

A recurring theme in this thesis has been that different problems solve faster

with different simplifications enabled. The light-weight solver 4Simp (section 3.22)

outperformed STP2 on our evaluation problems. However, because 4Simp omits

standard simplifications it is not able to quickly answer many problems that STP2
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CHAPTER 7. CONCLUSION

finds easy. For instance, problems that require associative reasoning, such as a ×

(b × c) = (a × b) × c, are solved much faster by STP2.

For easy problems derived from our software verification tool (MinkeyRink),

STP 60 was overall faster than STP2. STP2’s cost of performing the extra simplifi-

cations is not justified for such easy problems.

Selecting a universally good set of parameters for a solver is difficult, as has been

observed by others ([dMP12]). For each simplification we have shown, it is easy

to craft problems which are very slow with that simplification disabled. However,

enabling simplifications has a cost which sometimes overwhelms the benefit—as

we showed with our 4Simp solver.

In this thesis we have focussed primarily on solving isolated problems. In prac-

tice, tools like our MinkeyRink analysis tool produce a sequence of related QF ABV

problems. A promising avenue of future research is to adapt the simplifications to

apply to sequences of problems dynamically. Such an approach might apply pa-

rameter optimisation to a sample from the sequence of QF ABV problems it receives

and adapt appropriately.

The improved performance of bit-vector and array solvers has enabled tools to

reasonmore precisely and efficiently about the effect of programs. The faster solvers

become, the more useful the tools are. There are many promising improvements to

apply to solvers and tools, with hard work, thesewill helpmillions of programmers

discover defects in their software.
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[ES04] Niklas Eén andNiklas Sörensson. An extensible SAT-solver. In Enrico

Giunchiglia andArmandoTacchella, editors,Theory andApplications of

Satisfiability Testing, volume 2919 of Lecture Notes in Computer Science,

pages 333–336. Springer-Verlag, 2004.
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